Research Articles
Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability
Role of Panicum turgidum Forssk. in arid desert ecosystems: Ecological adaptations and rangeland management
Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat- P. O. Box 24885, 131 09, Kuwait
Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat- P. O. Box 24885, 131 09, Kuwait
Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat- P. O. Box 24885, 131 09, Kuwait
Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat- P. O. Box 24885, 131 09, Kuwait
Abstract
The survival and performance of native desert plants in arid and saline environments is very low, which challenges the biodiversity productivity in these ecosystems. Panicum turgidum Forssk. is an efficient option for salt exclusion and possesses greater diversity, which is essential for rangeland development and enhancing biodiversity. This native desert grass exhibits several physiological responses to cope with the harsh conditions, such as drought, salinity and poor nutrient soil habitats that include the seashores, terrestrial desert plains and dunes. It plays an important role in revegetation projects and domestic feeding in arid desert ecosystems. The present review helps in providing an understanding of the ecology and biological processes of P. turgidum Forssk. which is crucial for conservation strategies, adaptations and survival in arid environments. Additionally, this review provides insights into the chemical composition and nutritive value of P. turgidum Forssk. shedding light on its forage yield and palatability. More significantly, its biological activities and importance in rangeland management within arid desert ecosystems of the Arabian Peninsula, including Kuwait, are explored. Optimizing agronomic practices is crucial for reducing soil salt, drought stress, harvest issues and its contribution to sustainable ecological functions and rangeland management. The key challenges and valuable suggestions for future research directions are also addressed.
References
- 1. Madouh TA. Eco-physiological responses of native desert plant species to drought and nutritional levels: case of Kuwait. Front Environ Sci. 2022;10:785517. https://doi.org/10.3389/fenvs.2022.785517
- 2. Adam AAG. Prevalence and nutritive value of some arid range plant species in Raniah Province of Makkah district. J Nat Sci Res. 2015;5(16):137‒41.
- 3. Khan MA, Ansari R, Ali H, Gul B, Nielsen BL. Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric Ecosyst Environ. 2009;129(4):542‒46. https://doi.org/10.1016/j.agee.2008.10.014
- 4. Migahid AM, El Shourbagy MN. The ecological amplitude of the desert grass Panicum turgidum. 1. Comparison of climatic conditions at Ras El-Hikma, Fuka and Almaza. The Bull Inst Desert. 1961;8(2):1‒20.
- 5. Gul B, Ansari R, Ali H, Adnan MY, Weber DJ, Nielsen BL, et al. The sustainable utilization of saline resources for livestock feed production in arid and semi-arid regions: A model from Pakistan. Emir J Food Agric. 2014;26(12):1032‒45. https://doi.org/10.9755/ejfa.v26i12.19102
- 6. Zuloaga FO, Salariato DL, Scataglini A. Molecular phylogeny of Panicum s. str. (Poaceae, Panicoideae, Paniceae) and insights into its biogeography and evolution. PloS One. 2018;13(2):e0191529. https://doi.org/10.1371/journal.pone.0191529
- 7. Osman AE, Makawi M, Ahmed R. Potential of the indigenous desert grasses of the Arabian Peninsula for forage production in a water‐scarce region. Grass Forage Sci. 2008;63(4):495‒503. https://doi.org/10.1111/j.1365-2494.2008.
- 00656.x
- 8. Madouh TA, Al-Sabbagh TA. Innovating forage production system in Kuwait using locally adapted native desert plant species. J Agri Horti Res. 2021;4(1):53‒61. https://doi.org/10.33140/jahr.04.01.01
- 9. Heneidy SZ, Halmy MW. The nutritive value and role of Panicum turgidum Forssk. in the arid ecosystems of the Egyptian desert. Acta Bot Croat. 2009;68(1):127‒46. https://hrcak.srce.hr/36158
- 10. Madouh TA. The influence of induced drought stress on germination of Cenchrus ciliaris L. and Cenchrus setigerus Vahl.: Implications for rangeland restoration in the arid desert environment of Kuwait. Res Ecol. 2023;5(1):1‒11. https://doi.org/10.30564/re. v5i1.5426
- 11. Seema M, Athar H. Germination and growth of Panicum turgidum provenance under saline conditions. Pak J Biol Sci. 2003;6(2):164–66. https://doi.org/10.3923/pjbs.2003.164 .166
- 12. Farag MA, El Fishawy AM, El-Toumy SA, Amer KF, Mansour AM, Taha HE. Antihepatotoxic effect and metabolite profiling of Panicum turgidum extract via UPLC-qTOF-MS. Pharmacogn Mag. 2016;12:S446–S453. https://doi.org/
- 10.4103/09 73-1296.191455
- 13. Heneidy SZ, Waseem M. Rehabilitation of degraded coastal mediterranean rangelands using Panicum turgidum Forssk. Acta Bot Croat. 2007;66(2):161‒76. https://hrcak.srce.hr/file/26522
- 14. Almutawa AA. Native and xeric plant recommendations for urban landscapes in Kuwait. Technol Hortic. 2022;2(1):1‒16. https://doi.org/10.48130/TIH-2022-0007
- 15. Bokhari UG, Alyaeesh F, Al-Noori M. Nutritional characteristics of important desert grasses in Saudi Arabia. J Range Manage. 1990;43(3):202‒04. https://doi.org/10.2307/3898672
- 16. ElKhazan M. Response of Pancium turgidum plant of habitat variation at the southwestern region of Saudi Arabia. J King Abdulaziz University-Meteorol, Environ and Arid Land Agri Sci. 2007;18(1):3‒22. https://doi.org/10.4197
- /met.18-1.8
- 17. Assaeed AM, Al-Faifi SA, Migdadi HM, El-Bana MI, Al Qarawi AA, Khan MA. Evaluation of genetic diversity of Panicum turgidum Forssk from Saudi Arabia. Saudi J Biol Sci. 2018;25(1):123‒29. https://doi.org/10.1016/j.sjbs.2017.04.002
- 18. Madouh TA, Quoreshi AM. The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review. Diversity. 2023;15(3):391. https://doi.org/10.3390/d15030391
- 19. Alburae N, Alshamrani R, Mohammed AE. Bioactive silver nanoparticles fabricated using Lasiurus scindicus and Panicum turgidum seed extracts: anticancer and antibacterial efficiency. Sci Rep. 2024;14(1):4162. https://doi.org/
- 10.1038/s415 98-024-54449-3
- 20. El-Desoukey RMA. Phytochemical and antimicrobial activity of Panicum turgidum (thummam) as a grazing herb against some animal pathogens. EC Microbiol. 2017;5(1):22‒29.
- 21. Brink M, Belay G. editors. Plant resources of tropical Africa 1. Cereals and pulses. PROTA Foundation, Wageningen, Netherlands / Backhuys Publishers, Leiden, Netherlands / CTA, Wageningen: Netherlands; 2006. p. 298
- 22. Williams JT. Utilisation and taxonomy of the desert grass Panicum turgidum. Econ Bot. 1972;26(1):13‒20. https://doi.org/10.1007/bf02862257
- 23. Batanouny K, Zayed K, Kabiel H. Reproductive ecology of Panicum turgidum Forssk. Taeckholmia. 2006;26(1):63‒88. https://doi.org/10.21608/taec.2006.12282
- 24. Madouh TA, Quoreshi AM. Terrestrial habitats and ecosystems of Kuwait. In: Suleiman MK, Shahid SA, editors. Terrestrial environment and ecosystems of Kuwait: assessment and restoration, Cham: Springer Nature Switzerland; 2023b. p. 247‒63. https://doi.org/10.1007/978-3-031-46262-7_10
- 25. Bhatt A, Bhat NR, Al-Nasser A, Carón MM, Santo A. Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum on the desert of Kuwait. J Arid Land. 2020;12:144‒53. https://doi.org/10.
- 1007/s40333-019-00 17-6
- 26. AbdAllah EF, Tabassum B, Alqarawi A, Alshahrani T, Malik J, Hashem A. Physiological markers mitigate drought stress in Panicum turgidum Forssk. by arbuscular mycorrhizal fungi. Pak J Bot. 2019;51(6):2003‒11.
- https://doi.org/10.30848/PJB2019-6(12)
- 27. Koyro HW, Hussain T, Huchzermeyer B, Khan MA. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot. 2013;91:22‒29. https://doi.org/10.1016/j.envexpbot. 2013.02.007
- 28. Aria AK, Asadpour R, Esfahan EZ, Amin M. Ecological characteristics of Panicum turgidum in Hormozgan province. J Bio and Env Sci. 2014;5:464‒69.
- 29. Madouh TA. Development and utilization of desert forages for sustainable livestock production under Kuwait
- conditions (FA078C) [Final Report]. Kuwait Institute for Scientific Res. KISR 11626. Kuwait; 2013
- 30. Ghannoum O. C4 photosynthesis and water stress. Ann Bot. 2009;103(4):635‒44. https://doi.org/10.1093/aob/mcn093
- 31. Vanaja M, Yadav SK, Archana G, Lakshmi JN, Reddy PR, Vagheera P, et al. Response of C4 (maize) and C3 (suNflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant Soil Environ. 2011;57(5):207‒15. https://doi.org/10.17221/346/2010-PSE
- 32. Jungcurt T. Analyses on the diversity of drought tolerance in grasses of the genus Panicum. [Doctoral dissertation]. Universitätsbibliothek Johann Christian Senckenber; 2014
- 33. Skerman PJ, Riveros F. Tropical grasses. FAO Plant Production and Protection Series; 1990
- 34. Baltzoi P, Fotia K, Kyrkas D, Nikolaou K, Paraskevopoulou AT, Accogli AR, Karras G. Low water–demand plants for landscaping and agricultural cultivations – A review regarding local species of Epirus/Greece and Apulia/Italy. Agric Agric Sci Procedia. 2015;4:250‒60. https://doi.org/10.1016/j.aaspro.2015.03.029
- 35. Sun H, Kopp K, Kjelgren R. Water-efficient urban landscapes: Integrating different water use categorizations and plant types. HortSci. 2012;47(2):254‒63. https://doi.org/10.21273/HORTSCI.47.2.254
- 36. Kotrade P, Werner A, Ebersberger I, Brüggemann W. Comparative transcriptomics reveal insights into the drought response of the three Panicum species P. bisulcatum, P. laetum and P. turgidum. Plant Gene. 2020;23:100232. https://doi.org/10.1016/j .plgene2020.100232
- 37. Wouw MV, Jorge MA, Bierwirth J, Hanson J. Characterisation of a collection of perennial Panicum species. Trop Grassl. 2008;42(1):40‒53.
- 38. Bhatt RK, Rajora MP, Kalia RK. Diversity, conservation and uses of pasture grasses of hot arid region of India. In: El-Beltagy A, Saxena MC, Yadav OP, Panwar NR, editors. Proceedings of the 13th International Conference on Development of Dry Lands. Converting Dryland Areas from Grey into Green; 2019 Feb 11-14; Jodhpur, India; 2019. p. 288‒90.
- 39. Abu-hashim M, Omran ESE, Allouche FK, Negm A. Update, conclusions and recommendations for “Agro-environmental sustainability in MENA regions”. In: Abu-hashim M, Allouche FK, Negm A, editors. Agro-environmental sustainability in MENA regions, Springer International Publishing; 2021. p. 433‒57. https://doi.org/10.1007/978- 3-030-78574-1_19
- 40. Al-Dousari AM, Ahmed MO, Al-Senafy M, Al-Mutairi M. Characteristics of nabkhas in relation to dominant perennial plant species in Kuwait. Kuwait J Sci Eng. 2008;35(1A):129‒50.
- 41. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32‒43. https://doi.org/10.1111/nph.12797
- 42. Hameed A, Khan MA. Halophytes: biology and economic potentials. Karachi Univ J Sci. 2011;39(1):40‒44.
- 43. Oatham MP. Water relations of Zygophyllum hamiense, Heliotropium kotschyi and Panicum turgidum and their response to rangeland management techniques in Abu Dhabi. J Arid Environ. 1997;35(1):95‒110. https://doi.org/10.
- 1006/jare. 1995.0133
- 44. Roche D. Stomatal conductance is essential for higher yield potential of C3 crops. Crit Rev Plant Sci. 2015;34(4):429‒53. https://doi.org/10.1080/07352689.2015.1023677
- 45. El-Khatib AA, Hegazy AK. Growth and energy content of three forage grasses from the Middle East rangelands. Acta Agron Hung. 2001;49(2):119‒31. https://doi.org/10.15 56/aagr.49.2001.2.2
- 46. Saqib M, Schubert S. Enhancing maize grain yield under salt‐affected field conditions using salt‐resistant maize hybrids and higher planting density. J Plant Nutr Soil Sci. 2023;186(3):259‒65. https://doi.org/10.1002/jpln.202200423
- 47. Unger PW, Stewart BA, Parr JF, Singh RP. Crop residue management and tillage methods for conserving soil and water in semi-arid regions. Soil Till Res. 1991;20(2-4):219‒40. https://doi.org/10.1016/0167-1987(91)90041-u
- 48. Nield JM, Baas ACW. Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach. Earth Surf Processes Landforms. 2008;33(5):724‒40. https://doi.org/10.1002/esp.1571
- 49. Capstaff NM, Miller AJ. Improving the yield and nutritional quality of forage crops. Front Plant Sci. 2018;9:535. https://doi.org/10.3389/fpls.2018.00535
- 50. Al-Rowaily SL, Abd-ElGawad AM, Alghanem SM, Al-Taisan WA, El-Amier YA. Nutritional value, mineral composition, secondary metabolites and antioxidant activity of some wild geophyte sedges and grasses. Plants. 2019;8(12):569. https://doi.org/10.3390 /plants8120569
- 51. Bryant JP, Kuropat PJ. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu Rev Ecol Syst. 1980;11:261‒85. https://doi.org/10.1 146/annurev.es.11.110180.001401
- 52. Heneidy SZ. Browsing and nutritive value of the most common range species in Matruh area, a coastal Mediterranean region, Egypt. Ecol Mediterr. 2002;28(2):39‒49. https://doi.org/10.3406/ecmed.2002.1572
- 53. Adams DC, Clark RT, Klopfenstein TJ, Volesky JD. Nutritional value of grazed forages and how it fits the cow’s requirement. In: Proceedings of the range beef cow symposium XIV; 1995 Dec 3-6; Gering, Nebraska: USA; 1995
- 54. Zaki AA, Qiu L, Ali Z, Khan SI, Khan IA. Anti-inflammatory steroidal saponins from Panicum turgidum. J Agric Basic Sci. 2016;1(2):1‒6.
- 55. Zaki AA, Ali Z, Wang YH, El-Amier YA, Khan SI, Khan IA. Cytotoxic steroidal saponins from Panicum turgidum Forssk. Steroids. 2017;125:14‒19. https://doi.org/10. 1016/j.steroids.2017.06.003
- 56. Zaki AA, Kaddah MM, Abulkhair HS, Ashour A. Unravelling the antifungal and antiprotozoal activities and LC-MS/MS quantification of steroidal saponins isolated from Panicum turgidum. RSC Adv. 2022;12(5):2980‒91.
- https://doi.org/10.1039/D1RA08532H
- 57. Ramteke R, Doneria R, Gendley MK. Antinutritional factors in feed and fodder used for livestock and poultry feeding. Acta Scientific Nutri Health. 2019;3(5):39‒48.
- 58. Onyeonagu CC, Ukwueze CC. Anti-nutrient components of guinea grass (Panicum maximum) under different nitrogen fertilizer application rates and cutting management. Afr J Biotechnol. 2012;11(9):2236‒40. https://doi.org/
- 10.5897/ajb11.748
- 59. Egan AR, Ulyatt MJ. Quantitative digestion of fresh herbage by sheep. J Agric Sci. 1980;94(1):47‒56. https://doi.org/10.1017/s002185960002788x
- 60. Chapman DF, Parsons AJ, Cosgrove GP, Barker DJ, Marotti DM, Venning KJ, et al. Impacts of spatial patterns in pasture on animal grazing behavior, intake and performance. Crop Sci. 2007;47(1):399‒415. https://doi.org/10.2135 /cropsci2006.01.0036
- 61. Bayala J, Ky-Dembele C, Kalinganire A, Olivier A, Nantoumé H. A review of pasture and fodder production and productivity for small ruminants in the Sahel [ICRAF occasional paper no. 21]. World Agroforestry Centre; 2014
- 62. Helal A. Industrial characteristics of wool produced from sheep fed on salt tolerant fodder crops. J Am Sci. 2013;9:770‒77.
- 63. Masters D, Edwards N, Sillence M, Avery A, Revell D, Friend M, et al. The role of livestock in the management of dryland salinity. Aust J Exp Agric. 2006;46(7):733‒41. https://doi.org/10.1071/EA06017
- 64. Masters DG, Norman HC. Genetic and environmental management of halophytes for improved livestock production. In: Khan MA, Ozturk M, Gul B, Ahmed MZ, editors. Halophytes for food security in dry lands, Academic press; 2016. p. 243‒57. https://doi.org/10.1016/B978-0-12-801854-5.00015-7
- 65. Inam R, Sultan JI, Muhammad Y, Nawaz H, Javed I, Hameed M. Mineral profile, palatability and digestibility of marginal land grasses of Trans-Himalayan grasslands of Pakistan. Pak J Bot. 2008;40(1):237‒48.
- 66. Hajebi A, Soltanipoor MA. Investigating preference index-based palatability of rangeland plants in Sirik Region, Hormozgan Province. Desert Ecosystem Engineer. 2022;11(34):59‒70. 10.22052/deej.2021.11.34.29
- 67. Edwards NJ, Hebart ML, Craig AD, Abraham EA, Edwards HJE. Applying nitrogen increases pasture and sheep production on puccinellia-based pastures in the SA SGSL experiment [CD-ROM]. In: Ridley A, Feikema P, Bennett S, Rogers M, Wilkinson R, Hirth J, editors. In: Proceedings of the conference salinity solutions: working with science and society CRC for Plant-based management of dryland salinity: Perth; 2004
- 68. Khan D, Ahmad R. Effects of irrigation with amended dilutions of seawater on germination, growth and cations distribution in Panicum turgidum Forsk. A desert fodder graminoid. Int J Biol and Biotech. 2007;4(2-3):149‒57.
- 69. Zaki AA, El-Amier YA, Ashour A. Two new cytotoxic tetralin derivatives from Panicum turgidum. Nat Prod Res. 2023;37(10):1595‒600. https://doi.org/10.1080/1478 6419.2022.2103121
- 70. Guesmi S, Mahjoubi M, Pujic P, Cherif A, Normand P, Sghaier H, Boubakri H. Biotechnological potential of Kocuria rhizophila PT10 isolated from roots of Panicum turgidum. Int J Environ Sci Technol. 2022;19:10105‒18.
- https://doi.org/10.1007/s13762-021-03824-y
- 71. Al-Ghanayem AA, Sobeai MS, Alhussaini SM, Joseph B, Saadabi AM. Short communication: Antibacterial activity of certain Saudi Arabian medicinal plants used in folk medicine against different groups of bacteria. Nusant Biosci. 2017;9(4):392‒95. https://doi.org/10.13057/nusbiosci/n090409
- 72. Alam MK, Ahmed S, Anjum S, Akram M, Shah SM, Wariss HM, et al. Evaluation of antipyretic activity of some medicinal plants from Cholistan desert Pakistan. Pak J Pharm Sci. 2016;29(2):529‒33.
- 73. Haddouchi F, Chaouche TM, Halla N. Phytochemical screening, antioxidant activities and hemolytic power of four Saharan plants from Algeria. Phytothérapie. 2018;16:254‒62. 10.3166/phyto-2019-0140
- 74. Mousa W, Alramadan N, Ghemrawi R, Izneid AT. Revealing culturable fungal microbiome communities from the Arabian Peninsula desert representing a unique source of biochemicals for drug discovery and biotechnology. F1000Res. 2024;13:1527. https://doi.org/10.12688/f1000research.158130.1
- 75. Madouh TA, Davidson MK. Phytochemical screening and potential effects of Farsetia aegyptia Turra seeds: A native desert herb, from Kuwait. J Trop Agric. 2024;62(1):81‒96. https://jtropag.kau.in/index.php/ojs2/article/view/1428
- 76. Kernick MD. An assessment of grass succession, utilization and development in the arid zone. In: Chapman GP, editor. Reproductive versatility in the grasses, Cambridge University Press; 1990. p. 154‒81
- 77. Zimmermann T, Bocksberger G, Brüggemann W, Berberich T. Phylogenetic relationship and molecular taxonomy of African grasses of the genus Panicum inferred from four chloroplast DNA-barcodes and nuclear gene sequences. J Plant Res. 2013;126:363‒71. https://doi.org/10.1007/s10265-012-0538-y
- 78. Zohary M. Plant life of Palestine, Israel and Jordan. The Ronald Press: New York; 1962
- 79. Misak R, Omar S, Abdulhadi A. Geomorphology and sustainable management for the sand dunes of Kuwait. In: Sand dunes of the northern hemisphere: distribution, formation, migration and management, CRC Press; 2023. p. 103‒28. https://doi.org/10.1201/9781003290629-10
- 80. Omar SA. Influence of precipitation on vegetation in the rangelands of Kuwait. In: Range management in arid zones. Routledge; 2014. p. 127‒38
- 81. Omar SA. Dynamics of range plants following 10 years of protection in arid rangelands of Kuwait. J Arid Environ. 1991;21:99‒111. https://doi.org/10.1016/S0140-1963(18)30732-8
- 82. Abo-Hassan AA. Rangeland management in Saudi Arabia. Rangelands. 1981;3:51‒53.
- 83. Naghizadeh N, Badripour H, Louhaichi M, Gamoun M, Niamir-Fuller M. Rangelands and pastoralism of the Middle-East and North Africa, from reality to dream. In: Proceedings of Joint XXIV International Grassland and XI International Rangeland Kenya 2021 Virtual Congress; Volume 1, Kenya; 2022. p. 04‒08.
- 84. Kamrani K, Arzani H, Javadi SA, Nejad RA. Rangeland condition and the appropriate rangeland management methods. J Agric Sci. 2019;26(4):524‒31. https://doi.org/10.15832/ankutbd.556745
- 85. Omar SA, Zaman S. Post-war rangeland status of Kuwait. In: West NE, editor. In: Proceedings of the Fifth International Rangeland Congress, Rangelands in a Sustainable Biosphere; 1995. p. 414‒15.
- 86. Quoreshi AM, Madouh TA. Kuwait deserts and ecosystems in the context of changing climate. In: Suleiman MK, Shahid SA, editors. Terrestrial environment and ecosystems of Kuwait: assessment and restoration, Cham: Springer Nature Switzerland; 2023. p. 341–59. http://dx.doi.org/10.1007/978-3-031-46262-7_14
- 87. Clawson M. Developing strategies for rangeland management: A report prepared by the committee on developing strategies for rangeland management, National Research Council, 25. Nat Res J. 1985;260‒63.
- 88. Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol. 2011;26(10):541‒49. https://doi.org/10.1016/j.tree.2011.06.011
- 89. Grealish G, Fitzpatrick RW, Asem SO. Assisting non-soil experts to identify soil types for land management to support restoration of arid rangeland native vegetation in Kuwait. Arid Land Res Manage. 2015;29(3):288‒305. https://doi.org/10.1080/15324982. 2014.973620
- 90. Ningappa KR, Kumar S, Singha JP. Role of Panicum turgidum dominated rangelands in conservation of Caralluma edulis in Thar Desert, India. The XXIII International Grassland Congress; New Delhi, India; 2015.
- 91. El-Keblawy A, Al-Ansari F, Al-Shamsi N. Impact of dormancy regulating chemicals on salinity induced dormancy in Lasiurus scindicus and Panicum turgidum: two desert glycophytic grasses. Plant Growth Regul. 2010;62:163‒70.
- https://doi.org/10.1007/s10725-010-9501-x
- 92. Quinton DA, Majak W, Hall JW. The effect of cattle grazing on the growth and miserotoxin content of Columbia milkvetch. J Range Manag. 1989;42(5):368‒71. https://doi.org/10.2307/3899540
- 93. Mohamed AH, El-Shesheny MA, Badawy HS. Estimating grazing capacity for desert rangelands of Wadi Hederbah in Southeastern Egypt. Adv Environ Biol. 2019;13(10):22‒31. https://doi.org/10.22587/aeb.2019.13.10.3
- 94. Brown G, Peacock J, Loughland R, Aldrami GA. Coastal and terrestrial ecosystem management requirements in the GCC states. ERWDA Internal Report, UAE; 2003
- 95. Al-Awadhi JM, Abd el-aal, A ea K, Misak R, Abdulhadi A. Geo-and environmental hazard studies in Kuwait. In: Abd el-aal, A ea K, Al-Awadhi JM, Al-Dousari A, editors. The geology of Kuwait; Springer; 2022. p.171‒98. https://doi.org/
- 10. 1007/978-3-031-16727-0_8
- 96. Hadi K. Current status, challenges and future management strategies for water resources of Kuwait. In: Suleiman MK, Shahid SA, editors. Terrestrial environment and ecosystems of Kuwait: Assessment and restoration, Cham: Springer Nature Switzerland; 2023. p.141‒69 https://doi.org/10.1007/978-3-031-46262-7_6
- 97. Al-Shammri ARS, Abahussain AA, Abdalla AAM, Al-Murad MA. Groundwater quality and its suitability for irrigation at Al-Wafra agricultural area in the state of Kuwait. Arab Gulf J Sci Res. 2014;32(4):213‒22. https://doi.org/10.51758/agjsr-04-2014-0026
- 98. Boote KJ, Adesogan AT, Balehegn M, Duncan A, Muir JP, Dubeux Jr JC, Rios EF. Fodder development in sub‐Saharan Africa: An introduction. Agron J. 2022;114(1):1‒7. https://doi.org/10.1002/agj2.20924
- 99. Chase LE. Climate change impacts on dairy cattle. Fact sheet, climate change and agriculture: Promoting practical and profitable responses; 2006 Available from https://climateandfarming. org/pdfs/FactSheets/III. 3Cattle. pdf. 2006
- 100. Guesmi S, Afef N, Petar P, Kais G, Rania O, Marwa J, et al. Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J Biol Sci. 2022;29(2):1260‒68. https://doi.org/10.1016/j.sjbs.2021.09.020
- 101. Madouh TA, Suleiman MK, Quoreshi AM, Davidson MK. Diversity of arbuscular mycorrhiza fungi in the arid desert ecosystems of Kuwait: Detection and identification from perennial native grass roots. Diversity. 2025;17(2):130. https://doi.org/10.3390/d17020130
Downloads
Download data is not yet available.