Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Assessment of maize evapotranspiration, water requirements and productivity using weather data in Coimbatore’s semiarid climate

DOI
https://doi.org/10.14719/pst.5246
Submitted
24 September 2024
Published
23-12-2024 — Updated on 09-03-2025
Versions

Abstract

Accurately estimating crop water use is crucial for efficient water management in conservation agriculture, especially in Coimbatore's semiarid climate. This study assessed maize water use and productivity over three growing seasons (2023- 2024) at Agricultural College and Research Institute (AC & RI), Coimbatore. Irrigation applied each season varied between 500.8mm and 554.1 mm, averaging 535.8 mm, while total water supply ranged from 810.6 to 985.3 mm. Actual evapotranspiration (ETa) was estimated using locally developed crop coefficient curves (Lkc) and Food and Agriculture Organization (FAO) crop coefficients (Kc). Water productivity for maize was calculated based on these estimates. Daily ETa for maize ranged from 0.9 mm to 8.2 mm. Other than the different seasons, ETa varied from 342.6 to 372 mm, averaging 355.6 mm with the Lkc curve. By FAO Kc, ETa ranged from 400.8 mm to 479.1 mm, with an average of 444.2 mm. The irrigation requirement ranged from 579.6 mm to 672.7 mm, with an average of 629.5 mm using Lkc. Using FAO Kc, the range was 637.8 mm to 762.9 mm, with an average of 718 mm. Crop water use efficiency (CWUE) ranged from 0.8 and 0.9 kg/ m³, with an average of 0.9 kg/m³. The evapotranspiration water use efficiency (ETWUE) ranged from 2.0 to 2.1 kg/m³, with an average of 2.1 kg/m³. The irrigation water use efficiency (IWUE) varied across seasons, averaging 1.4 kg/m³. Strong correlations were observed between CWUE, IWUE and the amount of seasonal irrigation (R² = 0.98 and 0.99, respectively). CWUE and ETWUE strongly correlated with IWUE (R² = 0.98 and 0.75, respectively). These findings suggest that maize irrigation in Coimbatore's semiarid regions should be tailored to local conditions to enhance water productivity.

References

  1. Compendium of best practices in water management - 3.0 [Internet] .NITI Aayog; 2023. Available from: https://www.niti.gov.in/sites/default/files/2023-08/COMPENDIUM-OF-BEST-PRACTICES-IN-WATER-MANAGEMENT-3.0_Water-Resources-Vertical_2_8_23.pdf
  2. Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, et al. The future of the global food system. Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2769-77. https://doi.org/10.1098/rstb.2010.0180
  3. Alharbi S, Felemban A, Abdelrahim A, Al-Dakhil M. Agricultural and technology-based strategies to improve water-use efficiency in arid and semiarid areas. Water. 2024;16(13):1842. https://doi.org/10.3390/w16131842
  4. Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. J Exp Bot. 2007;58(2):147-59. https://doi.org/10.1093/jxb/erl165
  5. Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, et al. Beat the stress: Breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet. 2021;134:1729-52. https://doi.org/10.1007/s00122-021-03773-7
  6. Kumar B, Dass A, Singh V, Dass S. Development of single cross hybrids in maize for different ecosystems. In: Kumar A, Jat SL, Kumar R, Yadav OP, Campus P, editors. Maize production systems for improving resource-use efficiency and livelihood security. New Delhi: Directorate of Maize Research; 2013. p. 93–96.
  7. Indiastat. Area under food crops [Internet]. 2023. Avaible from: https://www.indiastat.com/data/agriculture/area-under-food-crops
  8. Saggi MK, Jain S. Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ETc) for maize and wheat crops. Agric Water Manag. 2020;229:105907. https://doi.org/10.1016/j.agwat.2019.105907
  9. Nagler PL, Scott RL, Westenburg C, Cleverly JR, Glenn EP, Huete AR. Evapotranspiration on western US rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ. 2005;97(3):337-51. https://doi.org/10.1016/j.rse.2005.05.011
  10. Xiang K, Li Y, Horton R, Feng H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–A review. Agric Water Manag. 2020;232:106043. https://doi.org/10.1016/j.agwat.2020.106043
  11. Krishna GM, Muthuchamy I. Estimation of crop water requirement for multiple crops in the lower Bhavani project command of Tamil Nadu using aqua crop 4.0 water productive model. Trends Biosci. 2014;7:3057-63.
  12. Crétaux JF, Kouraev AV, Papa F, Bergé-Nguyen M, Cazenave A, Aladin N, et al. Evolution of sea level of the big Aral Sea from satellite altimetry and its implications for water balance. J Great Lakes Res. 2005;31(4):520-34. https://dx.doi.org/10.1016/S0380-1330(05)70281-1
  13. Jensen ME. Water consumption by agricultural plants. In: Kozlowski TT, editor. Water Deficits and Plant Growth. Vol 2. New York: Academic Press; 1968. p. 1-22.
  14. Djaman K, Irmak S. Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng. 2013;139(6):433-46. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000559
  15. Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol. 2011;151(2):128-36. https://doi.org/10.1016/j.agrformet.2010.09.009
  16. Djaman K, Mel VC, Balde AB, Bado BV, Manneh B, Diop L, et al. Evapotranspiration, irrigation water requirement and water productivity of rice (Oryza sativa L.) in the Sahelian environment. Paddy Water Environ. 2017;15:469-82. https://doi.org/10.1007/s10333-016-0564-9
  17. Arunadevi K, Ramachandran J, Vignesh S, Visuvanathakumar S, Anupriyanka S. Comparison of reference evapotranspiration in semi-arid region. Int J Agric Sci. 2017;9(52):4886-88.
  18. Vinitha S, Mani A, Lalitha R, Vallalkannan S. Performance evaluation of crop evapotranspiration of bhendi (Abelmoschus esculentus) by using FAO method and SVAT model. Environ Ecol. 2021;39(1):76-81.
  19. Radha M, Archana A, Vishnu Shankar S. Modelling potential evapotranspiration: Statistical analysis for Madurai’s water dynamics. Int J Adv Eng Res Sci. 2024;7(7S):194-200. https://doi.org/10.33545/2618060X.2024.v7.i7Sc.1009
  20. Ramanathan SP, Kokilavani S. Comparison of the monthly and seasonal estimates of potential evapotranspiration for Coimbatore station of Tamil Nadu using different methods. Mausam. 2021;72(3):681-84. https://doi.org/10.54302/mausam.v72i3.1320
  21. Doorenbos J, Pruitt WO. Guidelines for predicting crop water requirements [Internet]. FAO Irrig Drain Pap 24. Rome: FAO. 1977. Available from: https://www.fao.org/4/f2430e/f2430e.pdf
  22. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56 [Internet]. Rome: Food and Agriculture Organization of the United Nations; 1998. Available from: https://www.fao.org/4/x0490e/x0490e00.htm
  23. Allen RG, Pereira LS, Smith M, Raes D, Wright JL. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J Irrig Drain Eng. 2005;131(1):2-13. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)
  24. Allen RG, Wright JL, Pruitt WO, Pereira LS, Jensen ME. Water requirements. In: Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliott RL, editors. Design and operation of farm irrigation systems. 2nd ed. St Joseph: American Society of Agricultural and Biological Engineers; 2007. p. 208-88. https://doi.org/10.13031/2013.23691
  25. Payero JO, Irmak S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric Water Manag. 2013;129:31-43. http://dx.doi.org/10.1016/j.agwat.2013.06.018
  26. Sampathkumar T, Pandian BJ, Rangaswamy MV, Manickasundaram P, Jeyakumar P. Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence. Agric Water Manag. 2013;130:90-102. https://doi.org/10.1016/j.agwat.2013.08.018
  27. Zheng J, Huang G, Wang J, Huang Q, Pereira LS, Xu X, Liu H. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrig Sci. 2013;31:995-1008. https://doi.org/10.1007/s00271-012-0378-5
  28. Sammis TW, Mapel CL, Lugg DG, Lansford RR, McGuckin JT. Evapotranspiration crop coefficients predicted using growing-degree-days. Trans ASAE. 1985;28(3):773-80. https://doi.org/10.13031/2013.32336
  29. Araya A, Kisekka I, Vara Prasad PV, Gowda PH. Evaluating optimum limited irrigation management strategies for corn production in the Ogallala aquifer region. J Irrig Drain Eng. 2017;143(10):04017041. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001228
  30. Nielsen D, Hinkle S. Field evaluation of basal crop coefficients for corn based on growing degree days, growth stage or time. Trans ASAE. 1996;39(1):97-103. https://doi.org/10.13031/2013.27485
  31. Beutler AM, Keller AA. Implementation of FAO-56 Penman-Monteith evapotranspiration in a large-scale irrigation scheduling program. In: Walton R, editor. Impacts of global climate change. Anchorage (AK): Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers; 2005. p. 1–11. https://doi.org/10.1061/40792(173)538
  32. Irmak S. Interannual variation in long-term center pivot–irrigated maize evapotranspiration and various water productivity response indices. I: Grain yield, actual and basal evapotranspiration, irrigation-yield production functions, evapotranspiration-yield production functions and yield response factors. J Irrig Drain Eng. 2015;141(5):04014068. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000825
  33. Sharma V, Irmak S, Sharma V, Djaman K, Odhiambo L. Soil-water dynamics, evapotranspiration and crop coefficients of cover-crop mixtures in seed maize cover-crop rotation fields. II: Grass-reference and alfalfa-reference single (normal) and basal crop coefficients. J Irrig Drain Eng. 2017;143(9):04017033. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001214
  34. Darouich HM, Pedras CMG, Gonçalves JM, Pereira LS. Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosyst Eng. 2014;122:74-90. https://doi.org/10.1016/j.biosystemseng.2014.03.010
  35. Irmak S, Djaman K, Rudnick DR. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig Sci. 2016;34:271-86. https://doi.org/10.1007/s00271-016-0502-z
  36. Lamm FR, Trooien TP. Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas. Irrig Sci. 2003;22:195-200. https://doi.org/10.1007/s00271-003-0085-3
  37. Pablo R, O'Neill MK, McCaslin BD, Remmenga MD, Keenan JG, Onken BM. Evaluation of corn grain yield and water use efficiency using subsurface drip irrigation. J Sustain Agric. 2007;30(1):153-72. https://doi.org/10.1300/J064v30n01_10
  38. Djaman K, Irmak S. Soil water extraction patterns and crop, irrigation and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings. Trans ASABE. 2012;55(4):1223-38. https://doi.org/10.13031/2013.42262
  39. Pejic B, Maheshwari B, Seremesic S, Stricevic R, Pacureanu-Joita M, Rajic M, Cupina B. Water-yield relations of maize (Zea mays L.) in temperate climatic conditions. Maydica. 2011;56:315-21.
  40. Pejic B, Bošnjak D, Mackic K, Rajic M, Josipovic M, Jug I, Maksimovic L. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia. Ratar Povrt. 2012;49(1):80-85. https://doi.org/10.5937/ratpov49-1141
  41. Klocke NL, Currie RS, Tomsicek DJ, Koehn J. Corn yield response to deficit irrigation. Trans ASABE. 2011;54(3):931-40. https://doi.org/10.13031/2013.37118

Downloads

Download data is not yet available.