Assessment of maize evapotranspiration, water requirements and productivity using weather data in Coimbatore’s semiarid climate
DOI:
https://doi.org/10.14719/pst.5246Keywords:
evapotranspiration, irrigation requirements, maize, water use efficiencyAbstract
Accurately estimating crop water use is crucial for efficient water management in conservation agriculture, especially in Coimbatore's semiarid climate. This study assessed maize water use and productivity over three growing seasons (2023-2024) at AC&RI, Coimbatore. Irrigation applied each season varied between 500.8mm and 554.1 mm, averaging 535.8 mm, while total water supply ranged from 810.6 to 985.3 mm. Actual evapotranspiration (ETa) was estimated using locally developed crop coefficient curves (Lkc) and FAO crop coefficients. Water productivity for maize was calculated based on these estimates. Daily ETa for maize ranged from 0.9mm to 8.2 mm. Other than the different seasons, ETa varied from 342.6 to 372 mm, averaging 355.6 mm with the Lkc curve. By FAO Kc, ETa ranged from 400.8mm to 479.1 mm, with an average of 444.2 mm. The irrigation requirement ranged from 579.6mm to 672.7 mm, with an average of 629.5 mm using LKc. Using FAO Kc, the range was 637.8mm to 762.9 mm, with an average of 718 mm. Crop water use efficiency (CWUE) ranged from 0.8 and 0.9 kg/m³, with an average of 0.9 kg/m³. The evapotranspiration water use efficiency (ETWUE) ranged from 2.0 to 2.1 kg/m³, with an average of 2.1 kg/m³. The irrigation water use efficiency (IWUE) varied across seasons, averaging 1.4 kg/m³. Strong correlations were observed between CWUE, IWUE, and the amount of seasonal irrigation (R² = 0.98 and 0.99, respectively). CWUE and ETWUE strongly correlated with IWUE (R² = 0.98 and 0.75, respectively). These findings suggest that maize irrigation in Coimbatore's semiarid regions should be tailored to local conditions to enhance water productivity.
Downloads
References
Compendium of best practices in water management - 3.0 [Internet] .NITI Aayog;2023. Available from: https://www.niti.gov.in/sites/default/files/2023-08/COMPENDIUM-OF-BEST-PRACTICES-IN-WATER-MANAGEMENT-3.0_Water-Resources-Vertical_2_8_23.pdf
Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, et al. The future of the global food system. Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2769-77. https://doi.org/10.1098/rstb.2010.0180
Alharbi S, Felemban A, Abdelrahim A, Al-Dakhil M. Agricultural and technology-based strategies to improve water-use efficiency in arid and semiarid areas. Water. 2024;16(13):1842. https://doi.org/10.3390/w16131842
Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. J Exp Bot. 2007;58(2):147-59. https://doi.org/10.1093/jxb/erl165
Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, et al. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet. 2021;134:1729-52. https://doi.org/10.1007/s00122-021-03773-7
Bhupender Kumar, Dass A, Singh V, Dass S. Development of single cross hybrids in maize for different ecosystems. In: Kumar A, Jat SL, Kumar R, Yadav OP, Campus P, editors. Maize production systems for improving resource-use efficiency and livelihood security. New Delhi: Directorate of Maize Research; 2013. p. 93–96.
Indiastat. Area under food crops [Internet]. 2023. Avaible from: https://www.indiastat.com/data/agriculture/area-under-food-crops
Saggi MK, Jain S. Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ETc) for maize and wheat crops. Agric Water Manag. 2020;229:105907. https://doi.org/10.1016/j.agwat.2019.105907
Nagler PL, Scott RL, Westenburg C, Cleverly JR, Glenn EP, Huete AR. Evapotranspiration on western US rivers estimated using the enhanced vegetation index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ. 2005;97(3):337-51. https://doi.org/10.1016/j.rse.2005.05.011
Xiang K, Li Y, Horton R, Feng H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review. Agric Water Manag. 2020;232:106043. https://doi.org/10.1016/j.agwat.2020.106043
Krishna GM, Muthuchamy I. Estimation of crop water requirement for multiple crops in the lower Bhavani project command of Tamilnadu using aqua crop 4.0 water productive model. Trends Biosci. 2014;7:3057-63.
Crétaux JF, Kouraev AV, Papa F, Bergé-Nguyen M, Cazenave A, Aladin N, et al. Evolution of sea level of the big Aral Sea from satellite altimetry and its implications for water balance. J Great Lakes Res. 2005;31(4):520-34. https://dx.doi.org/10.1016/S0380-1330(05)70281-1
Jensen ME. Water consumption by agricultural plants. In: Kozlowski TT, editor. Water Deficits and Plant Growth. Vol 2. New York: Academic Press; 1968. p. 1-22.
Djaman K, Irmak S. Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng. 2013;139(6):433-46. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000559
Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol. 2011;151(2):128-36. https://doi.org/10.1016/j.agrformet.2010.09.009
Djaman K, Mel VC, Balde AB, Bado BV, Manneh B, Diop L, et al. Evapotranspiration, irrigation water requirement and water productivity of rice (Oryza sativa L.) in the Sahelian environment. Paddy Water Environ. 2017;15:469-82. https://doi.org/10.1007/s10333-016-0564-9
Arunadevi K, Ramachandran J, Vignesh S, Visuvanathakumar S, Anupriyanka S. Comparison of reference evapotranspiration in semi-arid region. Int J Agric Sci. 2017;9(52):4886-88.
Vinitha S, Mani A, Lalitha R, Vallalkannan S. Performance evaluation of crop evapotranspiration of bhendi (Abelmoschus esculentus) by using FAO method and SVAT model. Environ Ecol. 2021;39(1):76-81.
Radha M, Archana A, Vishnu Shankar S. Modelling potential evapotranspiration: Statistical analysis for Madurai’s water dynamics. Int J Adv Eng Res Sci. 2024;7(7S):194-200. https://doi.org/10.33545/2618060X.2024.v7.i7Sc.1009
Ramanathan SP, Kokilavani S. Comparison of the monthly and seasonal estimates of potential evapotranspiration for Coimbatore station of Tamilnadu using different methods. Mausam. 2021;72(3):681-84. https://doi.org/10.54302/mausam.v72i3.1320
Doorenbos J, Pruitt WO. Guidelines for predicting crop water requirements [Internet]. FAO Irrig Drain Pap 24. Rome: FAO. 1977. Available from: https://www.fao.org/4/f2430e/f2430e.pdf
Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrig Drain Pap 56. Rome: FAO. 1998; p. 300.
Allen RG, Pereira LS, Smith M, Raes D, Wright JL. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J Irrig Drain Eng. 2005;131(1):2-13. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)
Allen RG, Wright JL, Pruitt WO, Pereira LS, Jensen ME. Water requirements. In: Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliott RL, editors. Design and operation of farm irrigation systems. 2nd ed. St Joseph: American Society of Agricultural and Biological Engineers; 2007. p. 208-88. https://doi.org/10.13031/2013.23691
Payero JO, Irmak S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric Water Manag. 2013;129:31-43. http://dx.doi.org/10.1016/j.agwat.2013.06.018
Sampathkumar T, Pandian BJ, Rangaswamy MV, Manickasundaram P, Jeyakumar P. Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence. Agric Water Manag. 2013;130:90-102. https://doi.org/10.1016/j.agwat.2013.08.018
Zheng J, Huang G, Wang J, Huang Q, Pereira LS, Xu X, Liu H. Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrig Sci. 2013;31:995-1008. https://doi.org/10.1007/s00271-012-0378-5
Sammis TW, Mapel CL, Lugg DG, Lansford RR, McGuckin JT. Evapotranspiration crop coefficients predicted using growing-degree-days. Trans ASAE. 1985;28(3):773-80.https://doi.org/10.13031/2013.32336
Araya A, Kisekka I, Vara Prasad PV, Gowda PH. Evaluating optimum limited irrigation management strategies for corn production in the Ogallala aquifer region. J Irrig Drain Eng. 2017;143(10):04017041. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001228
Nielsen D, Hinkle S. Field evaluation of basal crop coefficients for corn based on growing degree days, growth stage or time. Trans ASAE. 1996;39(1):97-103.https://doi.org/10.13031/2013.27485
Beutler AM, Keller AA. Implementation of FAO-56 Penman-Monteith evapotranspiration in a large scale irrigation scheduling program. In: Impacts of global climate change; 2005. p. 1-11. https://doi.org/10.1061/40792(173)538
Irmak S. Interannual variation in long-term center pivot–irrigated maize evapotranspiration and various water productivity response indices. I: Grain yield, actual and basal evapotranspiration, irrigation-yield production functions, evapotranspiration-yield production functions and yield response factors. J Irrig Drain Eng. 2015;141(5):04014068. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000825
Sharma V, Irmak S, Sharma V, Djaman K, Odhiambo L. Soil-water dynamics, evapotranspiration and crop coefficients of cover-crop mixtures in seed maize cover-crop rotation fields. II: Grass-reference and alfalfa-reference single (normal) and basal crop coefficients. J Irrig Drain Eng. 2017;143(9):04017033. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001214
Darouich HM, Pedras CMG, Gonçalves JM, Pereira LS. Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosyst Eng. 2014;122:74-90. https://doi.org/10.1016/j.biosystemseng.2014.03.010
Irmak S, Djaman K, Rudnick DR. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig Sci. 2016;34:271-86. https://doi.org/10.1007/s00271-016-0502-z
Lamm FR, Trooien TP. Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas. Irrig Sci. 2003;22:195-200.https://doi.org/10.1007/s00271-003-0085-3
Pablo R, O'Neill MK, McCaslin BD, Remmenga MD, Keenan JG, Onken BM. Evaluation of corn grain yield and water use efficiency using subsurface drip irrigation. J Sustain Agric. 2007;30(1):153-72. https://doi.org/10.1300/J064v30n01_10
Djaman K, Irmak S. Soil water extraction patterns and crop, irrigation and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings. Trans ASABE. 2012;55(4):1223-38.https://doi.org/10.13031/2013.42262
Peji? B, Maheshwari B, Seremesi? S, Stri?evi? R, Pacureanu-Joita M, Raji? M, ?upina B. Water-yield relations of maize (Zea mays L.) in temperate climatic conditions. Maydica. 2011;56:315-21.
Peji? B, Bošnjak ?, Ma?ki? K, Raji? M, Josipovi? M, Jug I, Maksimovi? L. Yield and water use efficiency of irrigated soybean in Vojvodina, Serbia. Ratar Povrt. 2012;49(1):80-85. https://doi.org/10.5937/ratpov49-1141
Klocke NL, Currie RS, Tomsicek DJ, Koehn J. Corn yield response to deficit irrigation. Trans ASABE. 2011;54(3):931-40. https://doi.org/10.13031/2013.37118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M Raguramakrishnan, S Pazhanivelan, M Raju, R Kumaraperumal, KV Ravi, A Senthil
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).