Starch-based nanoformulation of rhizobium enhancing growth, nodulation, and yield in black gram

Authors

  • T Lokesh Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0009-0000-7232-6462
  • V Gomathi Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0009-0001-2432-1808
  • M Senthilkumar Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0002-4568-478X
  • PS Moorthy Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Kumulur 621 712, Tamil Nadu, India https://orcid.org/0000-0003-4877-2782
  • KS Subramanian Coromandel Nanotechnology Centre, Coromandel International Ltd., Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0002-5216-7510
  • DJS Sharmila Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India https://orcid.org/0000-0001-8865-0355
  • JK Marry Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
  • T Navinkumar Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India

DOI:

https://doi.org/10.14719/pst.5261

Keywords:

black gram, controlled release, enzyme activity, nanoformulations, Rhizobium, SEM

Abstract

Black gram (Vigna mungo (L.) Hepper) is a significant pulse crop due to its nutritional value and productivity within the Indian subcontinent. Pulses possess the inherent ability to fix atmospheric nitrogen into the soil through a symbiotic association with the Rhizobium, a genus of essential soil microorganisms that facilitate nitrogen fixation in legumes. However, conventional biofertilizers encounter challenges related to limited shelf life, reduced cellular viability, and inefficacy of carriers. This research investigates the encapsulation of Rhizobium using starch nanoparticles and sodium alginate to mitigate these drawbacks. The nanoformulations was assessed, with a mean droplet size and polydispersity index of 292 nm and 0.056, respectively. FTIR analysis confirmed the successful incorporation of all functional components. SEM imaging illustrated a uniform distribution of the formulation over the seed coat. Release kinetics displayed an initial burst release, followed by controlled and sustained release phases. The nanoformulations effectively protects the cells from adverse conditions in soil with different pH levels. A pot culture experiment with Black gram was conducted to evaluate the efficacy of the nanoformulations. The findings indicated significant enhancements in growth parameters, nodulation, and yield characteristics compared to the control and conventional treatments. The highest dosage of nanoformulation at the rate of 15ml/8Kg (T6) consistently surpassed other treatments, demonstrating improved shoot and root lengths, chlorophyll content, soluble protein, and enzyme activities. Treatment T6 gains the highest nodule count (approx. 100/plant) and maximized yield parameters. This investigation highlights the potential of Rhizobium nanoformulations in promoting plant growth, nodulation, and yield in black gram. It offers a promising strategy for sustainable agricultural practices and addresses the limitations of traditional biofertilizers.

Downloads

Download data is not yet available.

References

Nair RM, Chaudhari S, Devi N, Shivanna A, Gowda A, Boddepalli VN, et al. Genetics, genomics and breeding of black gram [Vigna mungo (L.) Hepper]. Front Plant Sci. 2024;14:1273363. https://doi.org/10.3389/fpls.2023.1273363

Khanna R, Pawar J, Gupta S, Verma H, Trivedi H, Kumar P, et al. Efficiency of biofertilizers in increasing the production potential of cereals and pulses: A review. J Pharmacogn Phytochem. 2019;8(2):183-88.

USDA. National Nutrient Database 2018.

Ajmal M, Ali HI, Saeed R, Akhtar A, Tahir M, Mehboob MZ, et al. Biofertilizer as an alternative for chemical fertilizers. Research & Reviews: Journal of Agriculture and Allied Sciences. 2018;7(1):1-7.

Eliazer Nelson ARL, Ravichandran K, Antony U. The impact of the green revolution on indigenous crops of India. J Ethn Food. 2019;6:88. https://doi.org/10.1186/s42779-019-0011-9

Sharma N, Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 2017;10(6):675-79.

Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, et al. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. Sci Total Environ. 2024;929:172533. https://doi.org/10.1016/j.scitotenv.2024.172533

Chen JH. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. Citeseer. 2006. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=088d6ce3800f6a92f9890eaa4f77d04f1ac35df3

Kumar B, Singh M, Kumar D, Kumar S. Potential role of biofertilizers in pulse production. Food Sci Rep. 2022;3(7):21-24.

Nikzad K, Sagar L. Sustainable pulse production through the use of bio-fertilizers- A review. Elm-Ow-Fon, Sci Res J. 2023;61(2):13-19.

Brahmaprakash GP, Sahu PK. Biofertilizers for sustainability. J Indian Inst Sci. 2012;92(1):37-62.

Swarnalakshmi K, Vandana Y, Senthilkumar M, Dolly WD. Bio fertilizers for higher pulse production in India: Scope, accessibility and challenges. Indian J Agron. 2016;61:S173-S81.

Virk HK, Singh G, Kaur R. Recent advances in application of biofertilizers in pulses: A review. Legume Res. 2024;47(4):511-518.

Bhowmik SN, Das A. Biofertilizers: a sustainable approach for pulse production.In: Meena R, Das A, Yadav G, Lal R .(eds). Legumes for Soil Health and Sustainable Management. Springer, Singapore.2018;445-85.https://doi.org/10.1007/978-981-13-0253-4_14

Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints and prospects. Sustainability. 2021;13(3):1140. https://doi.org/10.3390/su13031140

Saberi Riseh R, Skorik YA, Thakur VK, Moradi Pour M, Tamanadar E, Noghabi SS. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci. 2021;22(20):11165. https://doi.org/10.3390/ijms222011165

Deaker R, Hartley E, Gemell G. Conditions affecting shelf-life of inoculated legume seed. Agriculture. 2012;2(1):38-51. https://doi.org/10.3390/agriculture2010038

Azmi AS, Malek MIA, Puad NIM. A review on acid and enzymatic hydrolyses of sago starch. Int Food Res J. 2017;24(Suppl):265-273.

Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, et al. Microencapsulating alginate-based polymers for probiotics delivery systems and their application. Pharmaceuticals. 2022;15(5):644. https://doi.org/10.3390/ph15050644

Chin SF, Pang SC, Tay SH. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym. 2011;86(4):1817-19. https://doi.org/10.1016/j.carbpol.2011.07.012

John RP, Tyagi R, Brar SK, Surampalli RY, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol. 2011;31(3):211-26. https://doi.org/10.3109/07388551.2010.513327

He Y, Wu Z, Tu L, Han Y, Zhang G, Li C. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl Clay Sci. 2015;109:68-75. https://doi.org/10.1016/j.clay.2015.02.001

Zhang J, Han C, Liu Z. Absorption spectrum estimating rice chlorophyll concentration: preliminary investigations. J Plant Breed Crop Sci. 2009;1(5):223-29.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6

Nicholas JC, Harper JE, Hageman RH. Nitrate reductase activity in soybeans (Glycine max [L.] Merr.) I. effects of light and temperature. Plant Physiol. 1976;58(6):731-35. https://doi.org/10.1104/pp.58.6.731

Casida LE Jr, Klein DA, Santoro T. Soil dehydrogenase activity. Soil Sci. 1964;98(6):371-76. https://doi.org/10.1097/00010694-196412000-00004

Saberi-Rise R, Moradi-Pour M. The effect of Bacillus subtilis Vru1 encapsulated in alginate-bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int J Biol Macromol. 2020;152:1089-97. https://doi.org/10.1016/j.ijbiomac.2019.10.197

Roy Choudhury S, Mandal A, Chakravorty D, Gopal M, Goswami A. Evaluation of physicochemical properties and antimicrobial efficacy of monoclinic sulfur-nanocolloid. J Nanopart Res. 2013;15:1491. https://doi.org/10.1007/s11051-013-1491-y

Peña AG, Franseschi FA, Estrada MC, Ramos VM, Zarracino RG, Loría JCZ, et al. Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends. Quim Nova. 2014;37:392-97. https://doi.org/10.5935/0100-4042.20140071

Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv. 1998;16(4):729-70. https://doi.org/10.1016/S0734-9750(98)00003-2

Wu Z, Guo L, Qin S, Li C. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol. 2012;39(2):317-27. https://doi.org/10.1007/s10295-011-1028-2

Zhang J, Singh D, Guo C, Shang Y, Peng S. Rhizobia at extremes of acidity, alkalinity, salinity and temperature.In: Singh R, Manchanda G, Maurya I, Wei Y. (eds). Microbial Versatility in Varied Environments: Microbes in Sensitive Environments. Springer, Singapore.2020;51-65. https://doi.org/10.1007/978-981-15-3028-9_4.

Marimuthu S, Gnanachitra M, Prabu Kumar G, Surendran U. Effect of organic and inorganic sources of phosphorus for enhancing productivity and phosphorus use efficiency in Blackgram under acid soils. J Plant Nutr. 2023;46(9):1845-55. https://doi.org/10.1080/01904167.2022.2155529

Hussain N, Hassan B, Habib R, Chand L, Ali A, Hussain A. Response of biofertilizers on growth and yield attributes of black gram (Vigna mungo L.). Int J Curr Res. 2011;2(1):148-50.

Veer D, Habib K, Kumar K. Response of black gram (Vigna mungo L. Hepper) to Rhizobium, phosphorus and nitrogen for sustainable agriculture: A mini review. International Journal of Plant and Environment. 2022;8(01):81-86. https://doi.org/10.18811/ijpen.v8i01.10

Singh T. Effect of growth regulators on nodulation and nitrogen fixation in Urdbean (Vigna mungo L.). Comparative Physiology and Ecology. 1993;18(3):79-82.

Dineshkumar R, Duraimurugan M, Sharmiladevi N, Lakshmi LP, Rasheeq AA, Arumugam A, et al. Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L.) an experimental cultivation. Biomass Conv Bioref. 2022;12:3007-3027. https://doi.org/10.1007/s13399-020-00857-0

Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett. 2011;16(1):5919-26.

Long SP, ZHU XG, Naidu SL, Ort DR. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006;29(3):315-30. https://doi.org/10.1111/j.1365-3040.2005.01493.x

Rajendran G, Sing F, Desai AJ, Archana G. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol. 2008;99(11):4544-50. https://doi.org/10.1016/j.biortech.2007.06.057

Mir S, Sirousmehr A, Shirmohammadi E. Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (Speed feed hybrid).Int J Biosci.2015;6(4):157-164.

Siswanti DU, Riesty OS, editors. Effects of biofertilizer and manure application on growth rate and chlorophyll content of spinach (Amaranthus tricolor L.) under salinity stress condition.

BIO Web Conf.. 2021;33:05003. https://doi.org/10.1051/bioconf/20213305003

Uddin M, Hussain S, Khan MMA, Hashmi N, Idrees M, Naeem A, et al. Use of N and P biofertilizers reduces inorganic phosphorus application and increases nutrient uptake, yield and seed quality of chickpea. Turk J Agric For. 2014;38:47-54. https://doi.org/10.3906/tar-1210-36

Babu S, Prasanna R, Bidyarani N, Nain L, Shivay YS. Synergistic action of PGP agents and Rhizobium spp. for improved plant growth, nutrient mobilization and yields in different leguminous crops. Biocatal Agric Biotechnol. 2015;4(4):456-64. https://doi.org/10.1016/j.bcab.2015.09.004

Ajaykumar R, Harishankar K, Chandrasekaran P, Kumaresan P, Sivasabari K, Rajeshkumar P, et al. Physiological and biochemical characters of black gram as influenced by liquid rhizobium with organic biostimulants. Legume Res. 2023;46(2):160-65. https://doi.org/10.18805/LR-5012

Published

23-12-2024

How to Cite

1.
Lokesh T, Gomathi V, Senthilkumar M, Moorthy P, Subramanian K, Sharmila D, Marry J, Navinkumar T. Starch-based nanoformulation of rhizobium enhancing growth, nodulation, and yield in black gram. Plant Sci. Today [Internet]. 2024 Dec. 23 [cited 2025 Jan. 7];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5261