Revolutionizing agriculture: Innovative bioinoculant formulation technologies for sustainability
DOI:
https://doi.org/10.14719/pst.5356Keywords:
biocontrol, biofertilizer, formulations, microorganisms, PGPRAbstract
Microbes are essential for sustainable agriculture, helping to reduce dependency on harmful chemical fertilizers and pesticides. Researchers are actively seeking solutions as researchers become increasingly aware of the adverse effects of urbanization and population growth. Studies on plant disease management highlight the benefits of biocontrol agents and biofertilizers for enhancing plant growth and development alongside their delivery mechanisms. While laboratory formulations show potential, their effectiveness often diminishes in field applications due to a lack of understanding of delivery systems. A comprehensive examination of the entire bioformulation process-from isolating beneficial microorganisms to production-is necessary. Various bioformulations exist, each with distinct advantages and limitations. Innovative formulation strategies are being explored to extend shelf life and improve delivery efficiency, enhancing field productivity and reducing environmental impact. The interplay between bioformulation technology and precision agriculture further emphasizes opportunities for optimizing resource use and minimizing costs. A key challenge remains in developing advanced bioformulation technologies that yield environmentally safe, user-friendly products with optimal field performance, ultimately replacing harmful chemicals. This review critically evaluates the latest developments in formulation types, field efficacy and the factors hindering widespread adoption.
Downloads
References
Ijaz M, Ali Q, Ashraf S, Kamran M, Rehman A. Development of future bioformulations for sustainable agriculture. Microbiome in Plant Health and Disease:Challenges and Opportunities. 2019;p. 421-46. https://doi.org/10.1007/978-981-13-8495-0_19
Singh L, Lamabam PG, Singh S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior. 2011;6(2):175-91. https://doi.org/10.4161/psb.6.2.14146
Abo-Baker A, Mostafa GG. Effect of bio- and chemical fertilizers on growth, sepals yield and chemical composition of Hibiscus sabdariffa in newly reclaimed soil of South Valley area. Asian Journal of Crop Science. 2011;3(1):16-25. https://doi.org/10.3923/ajcs.2011.16.25
Ravivarman J, Rajadurai J, Nakkeeran K, Senthilkumar M, Janavi G. Effect of beneficial microorganisms on the nursery plant production in crossandra (Crossandra infundibuliformis (L.) Nees) cv. Bangalore local. Journal of Pharmacognosy and Phytochemistry. 2019;8(2S):492-5.
Arora NK, Khare EK, Maheshwari KD. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. 2011. p. 97-116. https://doi.org/10.1007/978-3-642-13612-2_5 .
Boyette CD, Quimby PC, Bryson TC, Egley HG, et al. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Science. 1993;41(3):497-500. https://doi.org/10.1017/S0043174500052243
Aamir M, MohdRai K, Zehra A, Andleeb D, Dubey MK, et al. Microbial bioformulation-based plant biostimulants: A plausible approach toward next generation of sustainable agriculture. In: Kumar A, Radhakrishnan EK,Microbial Endophytes. Elsevier; 2020. p. 195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
Bashan Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry. 1986;18(3):297-301. https://doi.org/10.1016/0038-0717(86)90064-7
Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances. 1998;16(4):729-70. https://doi.org/10.1016/S0734-9750(98)00003-2
Ardakani SS, Heydari A, Khorasani N, Arjmandi R. Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against damping-off of cotton seedlings. Journal of Plant Pathology. 2010;92(1):83-8. https://www.jstor.org/stable/41998771
Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology. 2003;6:245-52. https://doi.org/10.1007/s10123-003-0144-x
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture. 2022;12(2):140. https://doi.org/10.3390/agriculture12020140
Balla A, Silini A, Cherif-Silini H, Chenari Bouket A, Alenezi FN, Belbahri L. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in sustainable agriculture. Applied Sciences. 2022;12(18):9020.https://doi.org/ 10.3390/app12189020
Nagachandrabose S. Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla, that infects carrot. Crop Protection. 2018;114:155-61. https://doi.org/10.1016/j.cropro.2018.08.022
Knowles A. Recent developments of safer formulations of agrochemicals. The Environmentalist. 2008;28:35-44. https://doi.org/10.1007/s10669-007-9045-4
Ifoulis A, Savopoulou-Soultani M. Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. Journal of Economic Entomology. 2004;97(2):340-3. https://doi.org/10.1093/jee/97.2.340
Merchant SA. The agrochemical industry. In: Springer; 2012. p. 643-99.
Bejarano A, Puopolo G. Bioformulation of microbial biocontrol agents for sustainable agriculture. In: Antonieta De Cal, Paloma M, Naresh M, editors. How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases. Springer Cham; 2020. p. 275-93. https://doi.org/10.1007/978-3-030-53238-3_16
O'Callaghan M, Gerard F. Establishment of Serratia entomophila in soil from a granular formulation. New Zealand Plant Protection. 2005;58:122-5. http://www.nzpps.org/terms_of_use.html
Cohen E, Joseph T. Photostabilization of Beauveria bassiana conidia using anionic dyes. Applied Clay Science. 2009;42(3-4):569-74. https://doi.org/10.1016/j.clay.2008.03.013.
McQuilken MP, Halmer P, Rhodes DJ. Application of Microorganisms to Seeds. In: Burges, H, editors. Formulation of Microbial Biopesticides. Springer, Dordrecht;1998. p. 255-85. https://doi.org/10.1007/978-94-011-4926-6_8
Warrior P, Konduru K, Vasudevan P. Formulation of biological control agents for pest and disease management. In: Gnanamanickam SS, editor.Biological Control of Crop Diseases. Marcel Dekker, New York; 2002. p. 421-42.
Bashan Y, de-Bashan L, Prabhu S. Encapsulated formulations for microorganisms in agriculture and the environment. In: PGPR Formulation. 2016. p. 4-6. https://doi.org/10.3389/fpls.2020.00270
Catroux G, Hartmann A, Revellin C. Trends in rhizobial inoculant production and use. Plant and Soil. 2001;230(1):21-30. https://doi.org/10.1023/A:1004777115628.
Malusà E, Pinzari F, Canfora L. Efficacy of biofertilizers: challenges to improve crop production. In: Singh D, Singh H, Prabha R, editors. Inoculants in Sustainable Agricultural Productivity: Vol 2: Functional Applications; 2016. p. 17-40. https://doi.org/10.1007/978-81-322-2644-4_2
Pindi PK, Kaushik S. Liquid microbial consortium: A potential tool for sustainable soil health. Journal of Biofertilizers & Biopesticides. 2012;3(4):124. http://dx.doi.org/10.4172/2155-6202.1000124
Krishnaprabu S. Liquid microbial consortium: A potential tool for sustainable soil health. Journal of Pharmacognosy and Phytochemistry. 2020;9(2):2191-9. 10.22271/phyto.2020.v9.i2aj.11182
Sharma M, Sharma S, Dwivedi A. Liquid biofertilizer application in soybean and regulatory mechanisms. Agriculture Today. 2010;44.
Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid bioformulation: A trending approach toward achieving sustainable agriculture. Molecular Biotechnology. 2023;1-26. https://doi.org/10.1007/s12033-023-00901-0
Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, et al. Microbial bioformulation-based plant biostimulants: A plausible approach toward next generation of sustainable agriculture. In: Microbial Endophytes. Elsevier; 2020. p. 195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
Vendan R, Thangaraju M. Development and standardization of cyst-based liquid formulation of Azospirillum bioinoculant. Acta Microbiologica et Immunologica Hungarica. 2007;54(2):167-77. https://doi.org/10.1556/amicr.54.2007.2.7
Singleton P, Keyser H, Sande E. Development and evaluation of liquid inoculants. In: Inoculants and Nitrogen Fixation of Legumes in Vietnam. 2002. p. 52-66. https://www.researchgate.net/publication/242193371_Development_and_Evaluation_of_Liquid_Inoculants
Brar SK, Verma M, Tyagi R, Valéro J. Recent advances in downstream processing and formulations of Bacillus thuringiensis-based biopesticides. Process Biochemistry. 2006;41(2):323-42. https://doi.org/10.1016/j.procbio.2005.07.015
Caesar A, Burr T. Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Applied and Environmental Microbiology. 1991;57(1):168-72. 0099-2240/91/010168-05$02.00/0
Mishra J, Arora NK. Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: For Sustainable Agriculture. 2016. p. 3-33. https://doi.org/10.1007/978-81-322-2779-3_1
DeChant P, Devisetty BN. U.S. Patent No. 8,454,983. Washington, DC: 2013.
Falk SP, Gadoury DM, Pearson RC, Seem RC. Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease. 1995;79(5):483-90. https://doi.org/10.1094/PD-79-0483
Chumthong A, Kanjanamaneesathian M, Pengnoo A, Wiwattanapatapee R. Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World Journal of Microbiology and Biotechnology. 2008;24:2499-507. https://doi.org/10.1007/s11274-008-9774-7
Tadros T. Suspension concentrates. In: Encyclopedia of Colloid and Interface Science. Ed. T. Tadros. Springer; 10.1007/978-3-642-20665-8
Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, et al. Microbial bioformulation: a microbial-assisted biostimulating fertilization technique for sustainable agriculture. Front Plant Sci. 2023;14:1270039. https://doi.org/10.3389/fpls.2023.1270039
Anith KN, Vyshakhi AS, Aswathy V, Viswanathan A, Shilpa V, Varkey S, et al. Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture. 2017; 54(2):184.
Bullock J. Challenging the formulator: biocontrol and conventional crop protection. Outlooks Pest Manag. 2020;31(3):132-6. https://doi.org/10.1564/v31_jun_10
Archana S, Prabakar K, Raguchander T, Thangeswari S. Development and standardization of invert emulsion formulation based bacterial endophyte of Pseudomonas fluorescens EPO 15. Trends Biosci. 2015;8(15):3836-41. : https://www.researchgate.net/publication/319043438
Batta YA. Invert emulsion: method of preparation and application as proper formulation of entomopathogenic fungi. MethodsX. 2016;3:119-27. https://doi.org/10.1016/j.mex.2016.02.001
Feng MG, Pu XY, Ying SH, Wang YG. Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid to control false-eye leafhopper Empoasca vitis on tea in southern China. Crop Prot. 2004;23(6):489-96. https://doi.org/10.1016/j.cropro.2003.10.004
Peeran MF, Nagendran K, Gandhi K, Raguchander T, Prabakar K. Water in oil-based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Prot. 2014;65:186-93. https://doi.org/10.1016/j.cropro.2014.07.010
Verhaar MA, Hijwegen T, Zadoks J. Improvement of the efficacy of Verticillium lecanii used in biocontrol of Sphaerotheca fuliginea by addition of oil formulations. BioControl. 1999;44:73-87. https://doi.org/10.1023/A:1009907012836
John RP, Tyagi R, Brar S, Surampalli R, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol. 2011;31(3):211-26. https://doi.org/10.3109/07388551.2010.513327
Rojas-Sánchez B, Guzmán-Guzmán P, Morales-Cedeño LR, Orozco-Mosqueda MdC, Saucedo-Martínez BC, Sánchez-Yáñez JM, et al. Bioencapsulation of microbial inoculants: mechanisms, formulation types and application techniques. Appl Biosci. 2022;1(2):198-220. https://doi.org/10.3390/applbiosci1020013
Meftah Kadmiri I, El Mernissi N, Azaroual SE, Mekhzoum MEM, Qaiss AEK, Bouhfid R. Bioformulation of microbial fertilizer based on clay and alginate encapsulation. Curr Microbiol. 2021;78(1):86-94. https://doi.org/10.1007/s00284-020-02262-2
Saxena J. Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl Soil Ecol. 2011;48(3):301-8. https://doi.org/10.1016/j.apsoil.2011.04.007
Brahmaprakash G, Sahu PK, Lavanya G, Gupta A, Nair SS, Gangaraddi V. Role of additives in improving efficiency of bioformulation for plant growth and development. Front Soil Environ Microbiol. 2020;1:1-10. 10.1201/9780429485794-1
Prasad K, Kadokawa JI. Alginate-based blends and nano/microbeads. In: Alginates: Biology and Applications. 2009. p. 175-210. https://doi.org/10.1007/978-3-540-92679-5_8
Bashan Y, De-Bashan LE. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron. 2010;108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
Bashan Y, Hernandez J-P, Leyva LA, Bacilio M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils. 2002;35:359-68. https://doi.org/10.1007/s00374-002-0481-5
Bashan Y, Levanony H. Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol. 1987;133(12):3473-80. https://doi.org/10.1099/00221287-133-12-3473
Smidsrød O, Skja G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71-8.
Knell M. Nanotechnology and the sixth technological revolution. In: Nanotechnology and the challenges of equity, equality and development. 2011. p. 127-43.
Zhenzhong P, Bo C, Haixin C, Hongyu P. Progress on pesticide nanosuspension and its preparation methods. Chin J Pestic Sci. 2014;16(6):635-43. doi/10.3969/j.issn.1008-7303.2014.06.02
Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT. Nano-particles: a recent approach to insect pest control. Afr J Biotechnol. 2010;9(24):3489-93.
Castro MJ, Ojeda C, Cirelli AF. Advances in surfactants for agrochemicals. Environ Chem Lett. 2014;12:85-95. https://doi.org/10.1007/s10311-013-0432-4
Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014;63:224-35. https://doi.org/10.1016/j.envint.2013.11.015
Kumar P, Pandhi S, Mahato DK, Kamle M, Mishra A. Bacillus-based nano-bioformulations for phytopathogens and insect-pest management. Egypt J Biol Pest Control. 2021;31:1-11. https://doi.org/10.1186/s41938-021-00475-6
Tarafdar J. Novel bioformulations for nano-phosphorus synthesis and its use efficiency. Indian J Fert. 2020;16(12):1278-82.
Kolya H, Kang C-W. Synthesis of starch-based smart hydrogel derived from rice-cooked wastewater for agricultural use. Int J Biol Macromol. 2023;226:1477-89. https://doi.org/10.1016/j.ijbiomac.2022.11.260
Jen AC, Wake MC, Mikos AG. Hydrogels for cell immobilization. Biotechnol Bioeng. 1996;50(4):357-64. https://doi.org/10.1002/(SICI)1097-0290(19960520)50
Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol. 2018;11(2):277-301. https://doi.org/10.1111/1751-7915.12880
Adjuik TA, Nokes SE, Montross MD. Evaluating the feasibility of using lignin-alginate beads with starch additive for entrapping and releasing Rhizobium spp. J Appl Polym Sci. 2022;139(47). https://doi.org/10.1002/app.53181
Kadry G, El-Gawad HA. Rice straw derived cellulose-based hydrogels synthesis and applications as water reservoir system. Int J Biol Macromol. 2023;253:127058. https://doi.org/10.1016/j.ijbiomac.2023.127058
Young S, Townsend R, Swaminathan J, O'Callaghan M. Serratia entomophila-coated seed to improve ryegrass establishment in the presence of grass grubs. NZ Plant Protect. 2010;63:229-34. https://doi.org/10.30843/nzpp.2010.63.6573
Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, et al. Techniques for improving formulations of bioinoculants. 3 Biotech. 2020;10:1-9. https://doi.org/10.1007/s13205-020-02182-9
Sahu P, Brahmaprakash G. Formulations of biofertilizers–approaches and advances. In: Singh D, Singh H, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity: Vol 2: functional applications. Springer, New Delhi; 2016. p. 179-98. https://doi.org/10.1007/978-81-322-2644-4_12
Reardon RC. The gypsy moth nucleopolyhedrosis virus product. Appalachian Integrated Pest Management, USDA Forest Service, Northeastern Area; 1992.
Vimala Devi P, Duraimurugan P, Chandrika K, Vineela V. Development of a water dispersible granule (WDG) formulation of Bacillus thuringiensis for the management of Spodoptera litura (Fab.). Biocontrol Sci Technol. 2021;31(8):850-64. https://doi.org/10.1080/09583157.2021.1895073
González-Ferrero C, Irache J, González-Navarro C. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chem. 2018;239:879-88. https://doi.org/10.1016/j.foodchem.2017.07.022
Reddy PP, Reddy PP. Mass production, formulation, delivery and commercialization. In: Plant growth promoting rhizobacteria for horticultural crop protection. 2014:69-83. https://doi.org/10.1007/978-81-322-1973-6_5
Kosanke J, Osburn R, Shuppe G, Smith R. Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol. 1992;38(6):520-5. https://doi.org/10.1139/m92-086
Chakraborty AP. Carrier based bioformulations of PGPR: characteristics, shelf life and application in improving health status of crop plants—A mini review. Int J Res Rev. 2020;7:88-98. : www.ijrrjournal.com
Paul E, Fages J, Blanc P, Goma G, Pareilleux A. Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol. 1993;40:34-9. https://doi.org/10.1007/BF00170425
Brady N, Weil R. The nature and properties of soils. 13th ed. New Jersey: Prentice Hall; 1999.
DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5(2):91-. https://doi.org/10.1038/nnano.2010.2
Rani P, Wadhwa Z, Kumar Y. Bioformulations: The path to sustainable agriculture. Agritech Magazine. 2024;8:178.
Song JJ, Soytong K, Kanokmedhakul S, Kanokmedhakul K, Poeaim S. Antifungal activity of microbial nanoparticles derived from Chaetomium spp. against Magnaporthe oryzae causing rice blast. 2020. https://doi.org/10.17221/41/2019-PPS
Mehnaz S. An overview of globally available bioformulations. In: Bioformulations for sustainable agriculture. 2016:267-81. https://doi.org/10.1007/978-81-322-2779-3_15
Kutyova T, Durinina E, Muravyova N, Sheyko A. Microbial fertilizers Bamil, Omug, Ekud, Pudret: their properties, influence on soil and crops. Herald Moscow State Univ. Soil Sci Ser. 2002;4:40-6. doi: 10.3390/plants11151978
Zhigletsova S, Dunajtsev I, Besaeva S. Possibility of application of microorganisms for solving problems of ecological and food safety. Agric Chem. 2010. https://doi.org/10.1016/B978-0-12-811031-7.00003-0
Karimov KZaZ, N.V. Bacterial nitrogen fertilizers in cropping spring wheat. Herald Kazan State Agrarian Univ. 2007;6(2):64-5.
Cobos C. Crean con hongos nuevo fertilizante. 2005. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
Lara A. Nueva herramienta en el tratamiento de semillas de granos y cereales. 2008.
Moreno-Sarmiento N, Moreno-Rodríguez L, Uribe-Vélez D. Biofertilizantes para la agricultura en Colombia. In: Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Montevideo: Imprenta Denad Internacional; 2007:38-45. https://doi.org/10.17081/bonga.2204.c6
Pentón G, Reynaldo I, Martin G, Rivera R, Oropesa K. Use of EcoMic® and the bioactive product Pectimorf® in the establishment of two forage species. 2011.
Kennedy IR, Choudhury A, Kecskés ML. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem. 2004;36(8):1229-44. https://doi.org/10.1016/j.soilbio.2004.04.006
Mahajan A, Gupta R. Bio-fertilizers: Their kinds and requirement in India. In: Mahajan A, Gupta RD, editors. Integrated nutrient management (INM) in a sustainable rice-wheat cropping system. 2009:75-100. https://doi.org/10.1007/978-1-4020-9875-8_10
Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014:3-41. https://doi.org/10.1007/s11104-014-2131-8
Duarte CM, Alonso S, Benito G, Dachs J, Montes C, Pardo Buendía M, et al. Cambio Global. Impacto de la actividad humana sobre el sistema Tierra. Madrid: CSIC; 2006. https://aeclim.org/wp-content/uploads/2016/01/Cambio_global.pdf
Altieri MA. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ. 2004;2(1):35-42. https://doi.org/10.1890/1540-9295(2004)002[0035:leatfi]2.0.co;2
Stephens J, Rask H. Inoculant production and formulation. Field Crop Res. 2000;65(2-3):249-58. https://doi.org/10.1016/S0378-4290(99)00090-8
Hynes RK, Boyetchko SM. Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem. 2006;38(4):845-9. https://doi.org/10.1016/j.soilbio.2005.07.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Y K Anusha, U Sivakumar, S K Manoranjitham, M Senthilkumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).