Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Revolutionizing agriculture: Innovative bioinoculant formulation technologies for sustainability

DOI
https://doi.org/10.14719/pst.5356
Submitted
28 September 2024
Published
09-12-2024

Abstract

Microbes are essential for sustainable agriculture, helping to reduce dependency on harmful chemical fertilizers and pesticides. Researchers are actively seeking solutions as researchers become increasingly aware of the adverse effects of urbanization and population growth. Studies on plant disease management highlight the benefits of biocontrol agents and biofertilizers for enhancing plant growth and development alongside their delivery mechanisms. While laboratory formulations show potential, their effectiveness often diminishes in field applications due to a lack of understanding of delivery systems. A comprehensive examination of the entire bioformulation process-from isolating beneficial microorganisms to production-is necessary. Various bioformulations exist, each with distinct advantages and limitations. Innovative formulation strategies are being explored to extend shelf life and improve delivery efficiency, enhancing field productivity and reducing environmental impact. The interplay between bioformulation technology and precision agriculture further emphasizes opportunities for optimizing resource use and minimizing costs. A key challenge remains in developing advanced bioformulation technologies that yield environmentally safe, user-friendly products with optimal field performance, ultimately replacing harmful chemicals. This review critically evaluates the latest developments in formulation types, field efficacy and the factors hindering widespread adoption.

References

  1. Ijaz M, Ali Q, Ashraf S, Kamran M, Rehman A. Development of future bioformulations for sustainable agriculture. Microbiome in Plant Health and Disease:Challenges and Opportunities. 2019;p. 421-46. https://doi.org/10.1007/978-981-13-8495-0_19
  2. Singh L, Lamabam PG, Singh S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior. 2011;6(2):175-91. https://doi.org/10.4161/psb.6.2.14146
  3. Abo-Baker A, Mostafa GG. Effect of bio- and chemical fertilizers on growth, sepals yield and chemical composition of Hibiscus sabdariffa in newly reclaimed soil of South Valley area. Asian Journal of Crop Science. 2011;3(1):16-25. https://doi.org/10.3923/ajcs.2011.16.25
  4. Ravivarman J, Rajadurai J, Nakkeeran K, Senthilkumar M, Janavi G. Effect of beneficial microorganisms on the nursery plant production in crossandra (Crossandra infundibuliformis (L.) Nees) cv. Bangalore local. Journal of Pharmacognosy and Phytochemistry. 2019;8(2S):492-5.
  5. Arora NK, Khare EK, Maheshwari KD. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. 2011. p. 97-116. https://doi.org/10.1007/978-3-642-13612-2_5 .
  6. Boyette CD, Quimby PC, Bryson TC, Egley HG, et al. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Science. 1993;41(3):497-500. https://doi.org/10.1017/S0043174500052243
  7. Aamir M, MohdRai K, Zehra A, Andleeb D, Dubey MK, et al. Microbial bioformulation-based plant biostimulants: A plausible approach toward next generation of sustainable agriculture. In: Kumar A, Radhakrishnan EK,Microbial Endophytes. Elsevier; 2020. p. 195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
  8. Bashan Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry. 1986;18(3):297-301. https://doi.org/10.1016/0038-0717(86)90064-7
  9. Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances. 1998;16(4):729-70. https://doi.org/10.1016/S0734-9750(98)00003-2
  10. Ardakani SS, Heydari A, Khorasani N, Arjmandi R. Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against damping-off of cotton seedlings. Journal of Plant Pathology. 2010;92(1):83-8. https://www.jstor.org/stable/41998771
  11. Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology. 2003;6:245-52. https://doi.org/10.1007/s10123-003-0144-x
  12. Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture. 2022;12(2):140. https://doi.org/10.3390/agriculture12020140
  13. Balla A, Silini A, Cherif-Silini H, Chenari Bouket A, Alenezi FN, Belbahri L. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in sustainable agriculture. Applied Sciences. 2022;12(18):9020.https://doi.org/ 10.3390/app12189020
  14. Nagachandrabose S. Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla, that infects carrot. Crop Protection. 2018;114:155-61. https://doi.org/10.1016/j.cropro.2018.08.022
  15. Knowles A. Recent developments of safer formulations of agrochemicals. The Environmentalist. 2008;28:35-44. https://doi.org/10.1007/s10669-007-9045-4
  16. Ifoulis A, Savopoulou-Soultani M. Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. Journal of Economic Entomology. 2004;97(2):340-3. https://doi.org/10.1093/jee/97.2.340
  17. Merchant SA. The agrochemical industry. In: Springer; 2012. p. 643-99.
  18. Bejarano A, Puopolo G. Bioformulation of microbial biocontrol agents for sustainable agriculture. In: Antonieta De Cal, Paloma M, Naresh M, editors. How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases. Springer Cham; 2020. p. 275-93. https://doi.org/10.1007/978-3-030-53238-3_16
  19. O'Callaghan M, Gerard F. Establishment of Serratia entomophila in soil from a granular formulation. New Zealand Plant Protection. 2005;58:122-5. http://www.nzpps.org/terms_of_use.html
  20. Cohen E, Joseph T. Photostabilization of Beauveria bassiana conidia using anionic dyes. Applied Clay Science. 2009;42(3-4):569-74. https://doi.org/10.1016/j.clay.2008.03.013.
  21. McQuilken MP, Halmer P, Rhodes DJ. Application of Microorganisms to Seeds. In: Burges, H, editors. Formulation of Microbial Biopesticides. Springer, Dordrecht;1998. p. 255-85. https://doi.org/10.1007/978-94-011-4926-6_8
  22. Warrior P, Konduru K, Vasudevan P. Formulation of biological control agents for pest and disease management. In: Gnanamanickam SS, editor.Biological Control of Crop Diseases. Marcel Dekker, New York; 2002. p. 421-42.
  23. Bashan Y, de-Bashan L, Prabhu S. Encapsulated formulations for microorganisms in agriculture and the environment. In: PGPR Formulation. 2016. p. 4-6. https://doi.org/10.3389/fpls.2020.00270
  24. Catroux G, Hartmann A, Revellin C. Trends in rhizobial inoculant production and use. Plant and Soil. 2001;230(1):21-30. https://doi.org/10.1023/A:1004777115628.
  25. Malusà E, Pinzari F, Canfora L. Efficacy of biofertilizers: challenges to improve crop production. In: Singh D, Singh H, Prabha R, editors. Inoculants in Sustainable Agricultural Productivity: Vol 2: Functional Applications; 2016. p. 17-40. https://doi.org/10.1007/978-81-322-2644-4_2
  26. Pindi PK, Kaushik S. Liquid microbial consortium: A potential tool for sustainable soil health. Journal of Biofertilizers & Biopesticides. 2012;3(4):124. http://dx.doi.org/10.4172/2155-6202.1000124
  27. Krishnaprabu S. Liquid microbial consortium: A potential tool for sustainable soil health. Journal of Pharmacognosy and Phytochemistry. 2020;9(2):2191-9. 10.22271/phyto.2020.v9.i2aj.11182
  28. Sharma M, Sharma S, Dwivedi A. Liquid biofertilizer application in soybean and regulatory mechanisms. Agriculture Today. 2010;44.
  29. Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid bioformulation: A trending approach toward achieving sustainable agriculture. Molecular Biotechnology. 2023;1-26. https://doi.org/10.1007/s12033-023-00901-0
  30. Aamir M, Rai KK, Zehra A, Dubey MK, Kumar S, Shukla V, et al. Microbial bioformulation-based plant biostimulants: A plausible approach toward next generation of sustainable agriculture. In: Microbial Endophytes. Elsevier; 2020. p. 195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
  31. Vendan R, Thangaraju M. Development and standardization of cyst-based liquid formulation of Azospirillum bioinoculant. Acta Microbiologica et Immunologica Hungarica. 2007;54(2):167-77. https://doi.org/10.1556/amicr.54.2007.2.7
  32. Singleton P, Keyser H, Sande E. Development and evaluation of liquid inoculants. In: Inoculants and Nitrogen Fixation of Legumes in Vietnam. 2002. p. 52-66. https://www.researchgate.net/publication/242193371_Development_and_Evaluation_of_Liquid_Inoculants
  33. Brar SK, Verma M, Tyagi R, Valéro J. Recent advances in downstream processing and formulations of Bacillus thuringiensis-based biopesticides. Process Biochemistry. 2006;41(2):323-42. https://doi.org/10.1016/j.procbio.2005.07.015
  34. Caesar A, Burr T. Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Applied and Environmental Microbiology. 1991;57(1):168-72. 0099-2240/91/010168-05$02.00/0
  35. Mishra J, Arora NK. Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: For Sustainable Agriculture. 2016. p. 3-33. https://doi.org/10.1007/978-81-322-2779-3_1
  36. DeChant P, Devisetty BN. U.S. Patent No. 8,454,983. Washington, DC: 2013.
  37. Falk SP, Gadoury DM, Pearson RC, Seem RC. Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease. 1995;79(5):483-90. https://doi.org/10.1094/PD-79-0483
  38. Chumthong A, Kanjanamaneesathian M, Pengnoo A, Wiwattanapatapee R. Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World Journal of Microbiology and Biotechnology. 2008;24:2499-507. https://doi.org/10.1007/s11274-008-9774-7
  39. Tadros T. Suspension concentrates. In: Encyclopedia of Colloid and Interface Science. Ed. T. Tadros. Springer; 10.1007/978-3-642-20665-8
  40. Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, et al. Microbial bioformulation: a microbial-assisted biostimulating fertilization technique for sustainable agriculture. Front Plant Sci. 2023;14:1270039. https://doi.org/10.3389/fpls.2023.1270039
  41. Anith KN, Vyshakhi AS, Aswathy V, Viswanathan A, Shilpa V, Varkey S, et al. Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture. 2017; 54(2):184.
  42. Bullock J. Challenging the formulator: biocontrol and conventional crop protection. Outlooks Pest Manag. 2020;31(3):132-6. https://doi.org/10.1564/v31_jun_10
  43. Archana S, Prabakar K, Raguchander T, Thangeswari S. Development and standardization of invert emulsion formulation based bacterial endophyte of Pseudomonas fluorescens EPO 15. Trends Biosci. 2015;8(15):3836-41. : https://www.researchgate.net/publication/319043438
  44. Batta YA. Invert emulsion: method of preparation and application as proper formulation of entomopathogenic fungi. MethodsX. 2016;3:119-27. https://doi.org/10.1016/j.mex.2016.02.001
  45. Feng MG, Pu XY, Ying SH, Wang YG. Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid to control false-eye leafhopper Empoasca vitis on tea in southern China. Crop Prot. 2004;23(6):489-96. https://doi.org/10.1016/j.cropro.2003.10.004
  46. Peeran MF, Nagendran K, Gandhi K, Raguchander T, Prabakar K. Water in oil-based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Prot. 2014;65:186-93. https://doi.org/10.1016/j.cropro.2014.07.010
  47. Verhaar MA, Hijwegen T, Zadoks J. Improvement of the efficacy of Verticillium lecanii used in biocontrol of Sphaerotheca fuliginea by addition of oil formulations. BioControl. 1999;44:73-87. https://doi.org/10.1023/A:1009907012836
  48. John RP, Tyagi R, Brar S, Surampalli R, Prévost D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol. 2011;31(3):211-26. https://doi.org/10.3109/07388551.2010.513327
  49. Rojas-Sánchez B, Guzmán-Guzmán P, Morales-Cedeño LR, Orozco-Mosqueda MdC, Saucedo-Martínez BC, Sánchez-Yáñez JM, et al. Bioencapsulation of microbial inoculants: mechanisms, formulation types and application techniques. Appl Biosci. 2022;1(2):198-220. https://doi.org/10.3390/applbiosci1020013
  50. Meftah Kadmiri I, El Mernissi N, Azaroual SE, Mekhzoum MEM, Qaiss AEK, Bouhfid R. Bioformulation of microbial fertilizer based on clay and alginate encapsulation. Curr Microbiol. 2021;78(1):86-94. https://doi.org/10.1007/s00284-020-02262-2
  51. Saxena J. Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl Soil Ecol. 2011;48(3):301-8. https://doi.org/10.1016/j.apsoil.2011.04.007
  52. Brahmaprakash G, Sahu PK, Lavanya G, Gupta A, Nair SS, Gangaraddi V. Role of additives in improving efficiency of bioformulation for plant growth and development. Front Soil Environ Microbiol. 2020;1:1-10. 10.1201/9780429485794-1
  53. Prasad K, Kadokawa JI. Alginate-based blends and nano/microbeads. In: Alginates: Biology and Applications. 2009. p. 175-210. https://doi.org/10.1007/978-3-540-92679-5_8
  54. Bashan Y, De-Bashan LE. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron. 2010;108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
  55. Bashan Y, Hernandez J-P, Leyva LA, Bacilio M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils. 2002;35:359-68. https://doi.org/10.1007/s00374-002-0481-5
  56. Bashan Y, Levanony H. Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol. 1987;133(12):3473-80. https://doi.org/10.1099/00221287-133-12-3473
  57. Smidsrød O, Skja G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71-8.
  58. Knell M. Nanotechnology and the sixth technological revolution. In: Nanotechnology and the challenges of equity, equality and development. 2011. p. 127-43.
  59. Zhenzhong P, Bo C, Haixin C, Hongyu P. Progress on pesticide nanosuspension and its preparation methods. Chin J Pestic Sci. 2014;16(6):635-43. doi/10.3969/j.issn.1008-7303.2014.06.02
  60. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT. Nano-particles: a recent approach to insect pest control. Afr J Biotechnol. 2010;9(24):3489-93.
  61. Castro MJ, Ojeda C, Cirelli AF. Advances in surfactants for agrochemicals. Environ Chem Lett. 2014;12:85-95. https://doi.org/10.1007/s10311-013-0432-4
  62. Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014;63:224-35. https://doi.org/10.1016/j.envint.2013.11.015
  63. Kumar P, Pandhi S, Mahato DK, Kamle M, Mishra A. Bacillus-based nano-bioformulations for phytopathogens and insect-pest management. Egypt J Biol Pest Control. 2021;31:1-11. https://doi.org/10.1186/s41938-021-00475-6
  64. Tarafdar J. Novel bioformulations for nano-phosphorus synthesis and its use efficiency. Indian J Fert. 2020;16(12):1278-82.
  65. Kolya H, Kang C-W. Synthesis of starch-based smart hydrogel derived from rice-cooked wastewater for agricultural use. Int J Biol Macromol. 2023;226:1477-89. https://doi.org/10.1016/j.ijbiomac.2022.11.260
  66. Jen AC, Wake MC, Mikos AG. Hydrogels for cell immobilization. Biotechnol Bioeng. 1996;50(4):357-64. https://doi.org/10.1002/(SICI)1097-0290(19960520)50
  67. Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol. 2018;11(2):277-301. https://doi.org/10.1111/1751-7915.12880
  68. Adjuik TA, Nokes SE, Montross MD. Evaluating the feasibility of using lignin-alginate beads with starch additive for entrapping and releasing Rhizobium spp. J Appl Polym Sci. 2022;139(47). https://doi.org/10.1002/app.53181
  69. Kadry G, El-Gawad HA. Rice straw derived cellulose-based hydrogels synthesis and applications as water reservoir system. Int J Biol Macromol. 2023;253:127058. https://doi.org/10.1016/j.ijbiomac.2023.127058
  70. Young S, Townsend R, Swaminathan J, O'Callaghan M. Serratia entomophila-coated seed to improve ryegrass establishment in the presence of grass grubs. NZ Plant Protect. 2010;63:229-34. https://doi.org/10.30843/nzpp.2010.63.6573
  71. Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, et al. Techniques for improving formulations of bioinoculants. 3 Biotech. 2020;10:1-9. https://doi.org/10.1007/s13205-020-02182-9
  72. Sahu P, Brahmaprakash G. Formulations of biofertilizers–approaches and advances. In: Singh D, Singh H, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity: Vol 2: functional applications. Springer, New Delhi; 2016. p. 179-98. https://doi.org/10.1007/978-81-322-2644-4_12
  73. Reardon RC. The gypsy moth nucleopolyhedrosis virus product. Appalachian Integrated Pest Management, USDA Forest Service, Northeastern Area; 1992.
  74. Vimala Devi P, Duraimurugan P, Chandrika K, Vineela V. Development of a water dispersible granule (WDG) formulation of Bacillus thuringiensis for the management of Spodoptera litura (Fab.). Biocontrol Sci Technol. 2021;31(8):850-64. https://doi.org/10.1080/09583157.2021.1895073
  75. González-Ferrero C, Irache J, González-Navarro C. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chem. 2018;239:879-88. https://doi.org/10.1016/j.foodchem.2017.07.022
  76. Reddy PP, Reddy PP. Mass production, formulation, delivery and commercialization. In: Plant growth promoting rhizobacteria for horticultural crop protection. 2014:69-83. https://doi.org/10.1007/978-81-322-1973-6_5
  77. Kosanke J, Osburn R, Shuppe G, Smith R. Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol. 1992;38(6):520-5. https://doi.org/10.1139/m92-086
  78. Chakraborty AP. Carrier based bioformulations of PGPR: characteristics, shelf life and application in improving health status of crop plants—A mini review. Int J Res Rev. 2020;7:88-98. : www.ijrrjournal.com
  79. Paul E, Fages J, Blanc P, Goma G, Pareilleux A. Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol. 1993;40:34-9. https://doi.org/10.1007/BF00170425
  80. Brady N, Weil R. The nature and properties of soils. 13th ed. New Jersey: Prentice Hall; 1999.
  81. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5(2):91-. https://doi.org/10.1038/nnano.2010.2
  82. Rani P, Wadhwa Z, Kumar Y. Bioformulations: The path to sustainable agriculture. Agritech Magazine. 2024;8:178.
  83. Song JJ, Soytong K, Kanokmedhakul S, Kanokmedhakul K, Poeaim S. Antifungal activity of microbial nanoparticles derived from Chaetomium spp. against Magnaporthe oryzae causing rice blast. 2020. https://doi.org/10.17221/41/2019-PPS
  84. Mehnaz S. An overview of globally available bioformulations. In: Bioformulations for sustainable agriculture. 2016:267-81. https://doi.org/10.1007/978-81-322-2779-3_15
  85. Kutyova T, Durinina E, Muravyova N, Sheyko A. Microbial fertilizers Bamil, Omug, Ekud, Pudret: their properties, influence on soil and crops. Herald Moscow State Univ. Soil Sci Ser. 2002;4:40-6. doi: 10.3390/plants11151978
  86. Zhigletsova S, Dunajtsev I, Besaeva S. Possibility of application of microorganisms for solving problems of ecological and food safety. Agric Chem. 2010. https://doi.org/10.1016/B978-0-12-811031-7.00003-0
  87. Karimov KZaZ, N.V. Bacterial nitrogen fertilizers in cropping spring wheat. Herald Kazan State Agrarian Univ. 2007;6(2):64-5.
  88. Cobos C. Crean con hongos nuevo fertilizante. 2005. https://doi.org/10.1016/B978-0-12-819654-0.00008-9
  89. Lara A. Nueva herramienta en el tratamiento de semillas de granos y cereales. 2008.
  90. Moreno-Sarmiento N, Moreno-Rodríguez L, Uribe-Vélez D. Biofertilizantes para la agricultura en Colombia. In: Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Montevideo: Imprenta Denad Internacional; 2007:38-45. https://doi.org/10.17081/bonga.2204.c6
  91. Pentón G, Reynaldo I, Martin G, Rivera R, Oropesa K. Use of EcoMic® and the bioactive product Pectimorf® in the establishment of two forage species. 2011.
  92. Kennedy IR, Choudhury A, Kecskés ML. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem. 2004;36(8):1229-44. https://doi.org/10.1016/j.soilbio.2004.04.006
  93. Mahajan A, Gupta R. Bio-fertilizers: Their kinds and requirement in India. In: Mahajan A, Gupta RD, editors. Integrated nutrient management (INM) in a sustainable rice-wheat cropping system. 2009:75-100. https://doi.org/10.1007/978-1-4020-9875-8_10
  94. Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014:3-41. https://doi.org/10.1007/s11104-014-2131-8
  95. Duarte CM, Alonso S, Benito G, Dachs J, Montes C, Pardo Buendía M, et al. Cambio Global. Impacto de la actividad humana sobre el sistema Tierra. Madrid: CSIC; 2006. https://aeclim.org/wp-content/uploads/2016/01/Cambio_global.pdf
  96. Altieri MA. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ. 2004;2(1):35-42. https://doi.org/10.1890/1540-9295(2004)002[0035:leatfi]2.0.co;2
  97. Stephens J, Rask H. Inoculant production and formulation. Field Crop Res. 2000;65(2-3):249-58. https://doi.org/10.1016/S0378-4290(99)00090-8
  98. Hynes RK, Boyetchko SM. Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem. 2006;38(4):845-9. https://doi.org/10.1016/j.soilbio.2005.07.003

Downloads

Download data is not yet available.