Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Co-cultivation of Bacillus amyloliquefaciens and Trichoderma harzianum: Synergistic effects on plant growth and biocontrol of jasmine collar rot

DOI
https://doi.org/10.14719/pst.5314
Submitted
26 September 2024
Published
18-12-2024

Abstract

Jasmine (Jasminum officinale) is a valuable and culturally significant flowering crop in India. Still, its cultivation is greatly impacted by collar rot disease, caused by Sclerotium rolfsii Sacc., resulting in yield losses of up to 50%. This study explores co-culture technology, utilizing Trichoderma harzianum TR(D)-4 and Bacillus amyloliquefaciens BC(M)-2, as an integrated single-product solution for the biological control of this pathogen. Field surveys conducted across major jasmine-growing districts in Tamil Nadu revealed a range of disease severity (20% - 52%) and incidence (29% - 64%). The collar rot pathogen, and biocontrol agents were isolated from surveyed locations and identified through morphological characteristics and molecular phylogenetic analysis based on internal transcribed spacer (ITS) and 16S ribosomal deoxyribonucleic acid (rDNA) sequences. In vitro assays using dual-plate and paired-plate methods demonstrated that B. amyloliquefaciens BC(M)-2 achieved inhibition rates of 71.34% and 78.27%, respectively, while T. harzianum TR(D)-4 exhibited inhibition rates of 86.27% and 75.43% against S. rolfsii SR(D)-5. Co-culturing these antagonistic strains synergistically improved antifungal effectiveness, achieving an 87% inhibition rate against S. rolfsii compared to their separate cultures. The synergistic interaction in co-culture promoted the production of novel compounds, including alpha-bisabolol (AB), bis(2-ethylhexyl) phthalate, and harziandione, which enhanced plant growth and inhibited S. rolfsii. Further planta studies confirmed that the co-culture significantly reduced disease incidence and enhanced plant growth in both pre-and post-inoculation strategies. This research highlights the potential of co-culturing T. harzianum TR(D)-4 and B. amyloliquefaciens BC(M)-2 as an effective and sustainable approach for managing collar rot disease in jasmine.

References

  1. Swaroopa ZM, Madhuri RJ. Bio-control activity of plant growth promoting rhizobacteria on Sclerotium rolfsii. Plant Arch. 2021;21(1):379-83. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.052
  2. Tseng YH, Rouina H, Groten K, Rajani P, Furch ACU, Reichelt M, et al. An endophytic Trichoderma strain promotes growth of its hosts and defends against pathogen attack. Front Plant Sci. 2020;11:573670. https://doi.org/10.3389/fpls.2020.573670
  3. Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, et al. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog. 2019;129:7-18. https://doi.org/10.1016/j.micpath.2019.01.042
  4. Saiyam D, Dubey A, Malla MA, Kumar A. Lipopeptides from Bacillus: Unveiling biotechnological prospects—sources, properties and diverse applications. Braz J Microbiol. 2024;55:281-95. https://doi.org/10.1007/s42770-023-01228-3
  5. Jayalakshmi R, Oviya R, Premalatha K, Mehetre ST, Paramasivam M, Kannan R, et al. Production, stability and degradation of Trichoderma gliotoxin in growth medium, irrigation water and agricultural soil. Sci Rep. 2021;11:16536. https://doi.org/10.1038/s41598-021-95907-6
  6. Xie S, Zang H, Wu H, FU Rajer, Gao X. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Mol Plant Pathol. 2018;19(1):49-58. https://doi.org/10.1111/mpp.12494
  7. Karuppiah V, Sun J, Li T, Vallikkannu M, Chen J. Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front Microbiol. 2019;10:1068. https://doi.org/10.3389/fmicb.2019.01068
  8. Wu Q, Ni M, Dou K, Tang J, Ren J, Yu C, Chen J. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microb Cell Fact. 2018;17:155. https://doi.org/10.1186/s12934-018-1004-x
  9. Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, Daletos G, et al. Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron. 2016;72(41):6340-47. https://doi.org/10.1016/j.tet.2016.08.022
  10. Haque MU, Haque MA, Sarker AK, Islam MA. Comparative studies of secondary metabolites of co-culture and monoculture of two marine actinomycetes and their biological activities. Int J Inno Pharma Sci Res. 2015;3(2):35-45.
  11. Li WY, Liu Y, Lin YT, Liu YC, Guo K, Li XN, et al. Antibacterial harziane diterpenoids from a fungal symbiont Trichoderma atroviride isolated from Colquhounia coccinea var. mollis. Phytochemistry. 2020;170:112198. https://doi.org/10.1016/j.phytochem.2019.112198
  12. Kasa P, Modugapalem H, Battini K. Isolation, screening and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Boil Med. 2015;6(2):360-363. https://doi. org/10.4103/0976-9668.160006
  13. Kumar MR, Santhoshi MVM, Krishna TG, Reddy KR. Cultural and morphological variability Sclerotium rolfsii isolates infecting groundnut and its reaction to some fungicidal. Int J Curr Microbiol App Sci. 2014;3(10):553-61.
  14. Haque Z, Iqbal MS, Ahmad A, Khan MS, Prakash J. Molecular characterization of Trichoderma spp. isolates by internal transcribed spacer (ITS) region sequencing technique and ITS use as a biocontrol agent. Open Biotechnol J. 2020;14:70-77.
  15. Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer;2005.
  16. Murray MG, Thompson W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-26. https://doi.org/10.1093/nar/8.19.4321
  17. Lone SA, Malik A, Padaria JC. Selection and characterization of Bacillus thuringiensis strains from northwestern Himalayas toxic against Helicoverpa armigera. Microbiologyopen. 2017;6(6):e00484. https://doi.org/10.1002/mbo3.484
  18. Gaigole AH, Wagh GN, Khadse AC. Antifungal activity of Trichoderma species against soil borne pathogen. Asiat J Biotechnol Resour. 2011;2(4):461465.
  19. Zhou XX, Pan YJ, Wang YB, Li WF. Optimization of medium composition for nisin fermentation with response surface methodology. J Food Sci. 2008;73(6):M245-49. https://doi.org/10.1111/j.1750-3841.2008.00836.x
  20. Fifani B, Steels S, Helmus C, Delacuvellerie A, Deracinois B, Phalip V, et al. Coculture of Trichoderma harzianum and Bacillus velezensis based on metabolic cross-feeding modulates lipopeptide production. Microorganisms. 2022;10(5):1059. https://doi.org/10.3390/microorganisms10051059
  21. Hiller K, Hangebrauk J, Jager C, Spura J, Schreiber K, Schomburg D. Metabolite detector: Comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem. 2009;81(9):3429-39. https://doi.org/10.1021/ac802689c
  22. Yendyo S, Ramesh GC, Pandey BR. Evaluation of Trichoderma spp., Pseudomonas fluorescens and Bacillus subtilis for biological control of Ralstonia wilt of tomato. F1000Res. 2017;6:2028. https://doi.org/10.12688/f1000research.12448.3
  23. Izquierdo-García LF, Gonz´alez-Almario A, Cotes AM, Moreno-Velandia CA. Trichoderma virens Gl006 and Bacillus velezensis Bs006: A compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep. 2020;10:6857. https://doi.org/10.1038/s41598-020-63689-y
  24. Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299. https://doi.org/10.3389/fmicb.2015.00299
  25. Xie C, Huang CH, Vallad GE. Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the Southern United States. Plant Dis. 2014;98(12):1685-94. https://doi.org/10.1094/PDIS-08-13-0861-RE
  26. Paparu P, Acur A, Kato F, Acam C, Nakibuule J, Nkuboye A, et al. Morphological and pathogenic characterization of Sclerotium rolfsii, the causal agent of southern blight disease on common bean in Uganda. Plant Dis. 2020;104(8):2130-37. https://doi.org/10.1094/PDIS-10-19-2144-RE
  27. Chaithra M, Prameeladevi T, Bhagyasree SN, Prasad L, Subramanian S, Kamil D. Multilocus sequence analysis for population diversity of indigenous entomopathogenic fungus Beauveria bassiana and its bio-efficacy against the cassava mite, Tetranychus truncatus Ehara (Acari: Tetranychidae). Front Microbiol. 2022;13:1007017. https://doi.org/10.3389/fmicb.2022.1007017
  28. Mahadevakumar S, Sarma PVSRN, Danteswari C, Joy J, Mahesh M, Mamathabhanu LS, et al. First report of Athelia rolfsii (= Sclerotium rolfsii) associated with foot rot disease of Chrysanthemum morifolium in India. Plant Dis. 107(7):2250. https://doi.org/10.1094/PDIS-10-22-2417-PDN
  29. Matas-Baca MÁ, García CU, Pérez-Álvarez S, Flores-Córdova MA, Escobedo-Bonilla CM, Magallanes-Tapia MA, et al. Morphological and molecular characterization of a new autochthonous Trichoderma sp. isolate and its biocontrol efficacy against Alternaria sp. Saudi J Biol Sci. 2022;29(4):2620-25. https://doi.org/10.1016/j.sjbs.2021.12.052
  30. Ayyandurai M, Theradimani M, Harish S, Manonmani K, Madhu GS, Raja IY, et al. Bioprospecting of microbial agents and their metabolites as potential inhibitors of Phytophthora cinnamomi, the causal agent of avocado root rot. Physiol Mol Plant Pathol. 2024;133:102362. https://doi.org/10.1016/j.pmpp.2024.102362
  31. Kamel SM, Farag FM, Arafa RA, Essa TA. Bio-control potentials of Trichoderma spp. against Sclerotium rolfsii the causative of root and crown rot in tomato, common bean and cabbage. Egyptian J Phytopathol. 2020;48(1):122-36. https://doi.org/10.21608/ejp.2020.54217.1018
  32. Chowdhury MR, Ahmed SF, Khalid B, Bony ZF, Asha JF, Bhuiyan MK. Biocontrol efficiency of microencapsulated Trichoderma harzianum coupled with organic additives against potato stem rot caused by Sclerotium rolfsii. Plant Stress. 2023;9:100181. https://doi.org/10.1016/j.stress.2023.100181
  33. Pacheco KR, Viscardi BSM, de Vasconcelos TDM, Moreira GAM, do Vale HMM, Blum LEB. Efficacy of Trichoderma asperellum, T. harzianum, T. longibrachiatum and T. reesei against Sclerotium rolfsii. Biosci J. 32(2):412-21. https://doi.org/10.14393/BJ-v32n2a2016-32732
  34. Li H, Li C, Song X, Li J, Zhang P, Sun F, et al. Isolation and identification of antagonistic Bacillus amyloliquefaciens HSE-12 and its effects on peanut growth and rhizosphere microbial community. Front Microbiol. 2023;14:1274346. https://doi.org/10.3389/fmicb.2023.1274346
  35. Mukherjee PK, Mukhopadhyay AN, Sarmah DK, Shrestha SM. Comparative antagonistic properties of Gliocladium virens and Trichoderma harzianum on Sclerotium rolfsii and Rhizoctonia solani- Its relevance to understanding the mechanisms of biocontrol. J Phytopathol. 1995;143(5):275-79. https://doi.org/10.1111/j.1439-0434.1995.tb00260.x
  36. Leylaie S, Zafari D. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front Microbiol. 2018;9:1484. https://doi.org/10.3389/fmicb.2018.01484
  37. Collins RP, Halim AF. Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem. 1972;20(2):437-38. https://doi.org/10.1021/jf60180a010
  38. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytol. 2016;209(4):1496-512. https://doi.org/10.1111/nph.13725
  39. Johannes E, Litaay M, Syahribulan. The bioactivity of hexadecanoic acid compound isolated from hydroid Aglaophenia cupressina Lamoureoux as antibacterial agent against Salmonella typhi. Int J Biol Med Res. 2016;7(2):5469-72.
  40. Kai M. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front Microbiol. 2020;11:559. https://doi.org/10.3389/fmicb.2020.00559
  41. Jahanshiri Z, Shams-Ghahfarokhi M, Asghari-Paskiabi F, Saghiri R, Razzaghi-Abyaneh M. alpha-Bisabolol inhibits Aspergillus fumigatus Af239 growth via affecting microsomal 24-sterol methyltransferase as a crucial enzyme in ergosterol biosynthesis pathway. World J Microbiol Biotechnol. 2017;33:55. https://doi.org/10.1007/s11274-017-2214-9
  42. Habib MR, Karim MR. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower. Mycobiology. 2009;37(1):31-36. https://doi.org/10.4489/myco.2009.37.1.031
  43. Mannina L, Segre AL, Ritieni A, Fogliano V, Vinale F, Randazzo G, et al. A new fungal growth inhibitor from Trichoderma viride. Tetrahedron. 1997;53(9):3135-44. https://doi.org/10.1016/S0040-4020(97)00024-0
  44. Miao FP, Liang XR, Yin XL, Wang G, Ji NY. Absolute configurations of unique harziane diterpenes from Trichoderma species. Org Lett. 2012;14(15):3815-17. https://doi.org/10.1021/ol3014717
  45. Song YP, Fang ST, Miao FP, Yin XL, Ji NY. Diterpenes and sesquiterpenes from the marine algicolous fungus Trichoderma harzianum X-5. J Nat Prod. 2018;81(11):2553-59. https://doi.org/10.1021/acs.jnatprod.8b00714
  46. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav. 2015;10(8):e1048052. https://doi.org/10.1080/15592324.2015.1048052
  47. Firdu Z, Alemu T, Assefa F. Field performance of Trichoderma harzianum AAUT14 and Bacillus subtilis AAUB95 on faba bean (Vicia faba L.) growth promotion and management of chocolate spot (Botrytis fabae Sard.). Int J Plant Soil Sci. 2020;32(12):35-45. https://doi.org/10.9734/ijpss/2020/v32i1230351
  48. Chaves NP, Pocasangre LE, Elango F, Rosales FE, Sikora R. Combining endophytic fungi and bacteria for the biocontrol of Radopholus similis (Cobb) Thorne and for effects on plant growth. Sci Hortic. 2009;122(3):472-78. https://doi.org/10.1016/j.scienta.2009.05.025

Downloads

Download data is not yet available.