Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Effectiveness of PlantbiotiX formulations as biological solutions for root-knot nematode in bitter gourd

DOI
https://doi.org/10.14719/pst.5318
Submitted
27 September 2024
Published
18-12-2024

Abstract

The root-knot nematode (Meloidogyne incognita) is a major pest that adversely affects bitter gourd production in India. Conventional chemical control methods, though effective, raise economic and environmental concerns, making it necessary to adopt integrated nematode management (INM) strategies. This study evaluates the bio-efficacy of PlantbiotiX formulations, including Bacillus. paralicheniformis 5 % WP ZBM5, Bacillus subtilis 2 % SP ZB87 ½, and Xplorer Glory (vesicular arbuscular mycorrhiza), for controlling root-knot nematodes in bitter gourd. Pot culture and field experiments were performed using various concentrations and application methods of PlantbiotiX formulations . Results revealed significant improvements in plant growth parameters, including vine length (9.13%), fruit weight (6.27%), number of fruits (25.21%), and yield per plant (36.36%) when B. paralicheniformis 5 % WP ZBM5 and B. subtilis 2 % SP ZB87 ½ were applied in combination. Furthermore, a substantial reduction in nematode populations was observed: soil nematode populations decreased by 72.9%, female nematodes by 65.01%, and egg mass by 60.59%. Scanning Electron Microscope (SEM) analysis of treated roots confirmed biofilm formation by B. paralichiniformis, demonstrating its capability to mitigate nematode infestation. This biofilm likely played a role in reducing nematode penetration and survival in the roots. The study indicates that PlantbiotiX formulations serve as a sustainable and environmentally friendly substitute for chemical nematicides, promoting plant growth and efficiently controlling root-knot nematodes, thereby presenting a viable solution for enhancing bitter gourd cultivation while reducing environmental harm.

References

  1. Krawinkel MB, Keding GB. Bitter gourd (Momordica charantia): A dietary approach to hyperglycemia. Nutr Rev. 2006;64(7 Pt 1):331-37. https://doi.org/10.1301/nr.2006.jul.331-337
  2. Behera TK, Behera S, Bharathi LK, John KJ, Simon PW, Staub JE. Bitter gourd: Botany, horticulture, breeding. In: Janic J, editor. Horticultural Reviews. Wiley-Blackwell;2010.v37.p.101-41. http://dx.doi.org/10.1002/9780470543672.ch2
  3. Krawinkel MB, Ludwig C, Swai ME, Yang RY, Chun KP, Habicht SD. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J Ethnopharmacol. 2018;216:1-7. https://doi.org/10.1016/j.jep.2018.01.016
  4. Kwatra D, Subramaniam D, Ramamoorthy P, Standing D, Moran E, Velayutham R, et al. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid Based Complement Alternat Med. 2013;2013(1):702869. https://doi.org/10.1155/2013/702869
  5. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Production, Processing and Nutrition. 2022;4(1):10. https://doi.org/10.1186/s43014-022-00089-x
  6. Khan J, Baheti B, Sharma HK, Bairwa HL, Verma A, Nama C. An eco-friendly management option against root-knot nematode (Meloidogyne incognita) infecting bitter gourd (Momordica charantia L.). Biol Forum. 2023;15(12):45-52.
  7. Singh SK, Conde B, Hodda M. Root-knot nematode (Meloidogyne incognita) on bitter melon (Momordica charantia) near Darwin, Australia. Australasian Plant Dis Notes. 2012;7:75-78. http://dx.doi.org/10.1007/s13314-012-0052-z
  8. Kumar V, Khan MR, Walia RK. Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett. 2020;43:409-12. https://doi.org/10.1007/s40009-020-00895-2
  9. Singh S. Integrated approach for the management of the root-knot nematode, Meloidogyne incognita, on eggplant under field conditions. Nematology. 2013;15(6):747-57. https://doi.org/10.1163/15685411-00002715
  10. Mane PB, Mhase N. Bioefficacy of different bioagents against root-knot nematode, Meloidogyne incognita infesting bottle gourd under laboratory conditions. Int J Plant Prot.2017;10(1):87-91. http://dx.doi.org/10.15740/HAS/IJPP/10.1/87-91
  11. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, et al. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol. 2019;17:119-28. http://dx.doi.org/10.1016/j.bcab.2018.11.009
  12. Sang MK, Kim KD. Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper. BioControl. 2014;59:437-48. http://dx.doi.org/10.1007/s10526-014-9584-9
  13. Ongena M, Jacques P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115-25. https://doi.org/10.1016/j.tim.2007.12.009
  14. Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. In: Gurtler V, Patrauchan M, editors. Methods in Microbiology. Elsevier; 2023.v53.p. 3-48. https://doi.org/10.1016%2Fbs.mim.2023.05.006
  15. Keswani C, Singh HB, García-Estrada C, Caradus J, He Y-W, Mezaache-Aichour S, et al. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl Microbiol Biotechnol. 2020;104(3):1013-34. https://doi.org/10.1007/s00253-019-10300-8
  16. Valenzuela-Ruiz V, Robles-Montoya RI, Parra-Cota FI, Santoyo G, Ma.del Carmen Orozco-Mosqueda M, Rodríguez-Ramírez R, et al. Draft genome sequence of B. paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech. 2019;9:436. https://doi.org/10.1007/s13205-019-1972-5
  17. Xu J, Qin L, Xu X, Shen H, Yang X. B. paralicheniformis RP01 enhances the expression of growth-related genes in cotton and promotes plant growth by altering microbiota inside and outside the root. Int J Mol Sci. 2023;24(8):7227. https://doi.org/10.3390/ijms24087227
  18. Wang J, Qu F, Liang J, Yang M, Hu X. Bacillus velezensis SX13 promoted cucumber growth and production by accelerating the absorption of nutrients and increasing plant photosynthetic metabolism. Sci Hortic. 2022;301:111151. https://doi.org/10.1016/j.scienta.2022.111151
  19. Palacio-Rodríguez R, Nava-Reyes B, Sánchez-Galván H, Quezada-Rivera JJ, Sáenz-Mata J. Effect of plant growth-promoting rhizobacteria inoculation on tomato under commercial shade-house conditions. Rev Mexicana Cienc Agric. 2022;13(SPE28):231-42. https://doi.org/10.29312/remexca.v13i28.3278
  20. Du Y, Ma J, Yin Z, Liu K, Yao G, Xu W, et al. Comparative genomic analysis of B. paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics. 2019;20:283. https://doi.org/10.1186/s12864-019-5646-9
  21. Swiatczak J, Kalwasinska A, Szabó A, Brzezinska MS. The effect of seed bacterization with B. paralicheniformis 2R5 on bacterial and fungal communities in the canola rhizosphere. Microbiol Res. 2023;275:127448. https://doi.org/10.1016/j.micres.2023.127448
  22. Asif M, Li-Qun Z, Zeng Q, Atiq M, Ahmad K, Tariq A, et al. Comprehensive genomic analysis of B. paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism. Comput Struct Biotechnol J. 2023;21:4647-62. https://doi.org/10.1016/j.csbj.2023.09.043
  23. Hashem A, Tabassum B, Abd_Allah EF. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019;26(6):1291-97. https://doi.org/10.1016/j.sjbs.2019.05.004
  24. Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol. 2017;8:171. https://doi.org/10.3389%2Ffmicb.2017.00171
  25. Lim J-H, Kim S-D. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J Korean Soc. Appl Biol Chem. 2009;52:531-38. http://dx.doi.org/10.3839/jksabc.2009.090
  26. Iqbal S, Qasim M, Rahman H, Khan N, Paracha RZ, Bhatti MF, et al. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant B. paralicheniformis ES-1 isolated from salt mine. Mol Genet Genomics 2023;298:79-93. https://doi.org/10.1007/s00438-022-01964-5
  27. Can-Ubando LC, Ramírez-Durán N, Aranda E, Manzanares-Leal GL, Sánchez-Reyes A, de Paz GA, et al. Complete genome sequence of the B. paralicheniformis strain HAS-1. Microbiol Resour Announc. 2024;13:e00337-24. https://doi.org/10.1128/mra.00337-24
  28. Chavarria-Quicaño E, Contreras-Jácquez V, Carrillo-Fasio A, De la Torre-González F, Asaff-Torres A. Native B. paralicheniformis isolate as a potential agent for phytopathogenic nematodes control. Front Microbiol. 2023;14:1213306. https://doi.org/10.3389/fmicb.2023.1213306
  29. Díaz-Manzano FE, Amora DX, Martínez-Gómez Á, Moelbak L, Escobar C. Biocontrol of Meloidogyne spp. in Solanum lycopersicum using a dual combination of Bacillus strains. Front Plant Sci. 2023;13:1077062. https://doi.org/10.3389/fpls.2022.1077062
  30. Chavarria-Quicaño E, De la Torre-González F, González-Riojas M, Rodríguez-González J, Asaff-Torres A. Nematicidal lipopeptides from B. paralicheniformis and Bacillus subtilis: A comparative study. Appl Microbiol Biotechnol. 2023;107:1537-49. https://doi.org/10.1007/s00253-023-12391-w
  31. Xia Y, Xie S, Ma X, Wu H, Wang X, Gao X. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol. Lett. 2011;322(2):99-107. https://doi.org/10.1111/j.1574-6968.2011.02336.x
  32. Nadeem H, Niazi P, Asif M, Kaskavalci G, Ahmad F. Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Plant Biol. 2021;23(6):1027-36. https://doi.org/10.1111/plb.13301
  33. Cao H, Jiao Y, Yin N, Li Y, Ling J, Mao Z, et al. Analysis of the activity and biological control efficacy of the Bacillus subtilis strain Bs-1 against Meloidogyne incognita. Crop Prot. 2019;122:125-35. http://dx.doi.org/10.1016/j.cropro.2019.04.021
  34. Ganeshan S, Settu V, Mannu J, Annaiyan S, Muthusamy G, Arun A, et al. Genomic analysis of Bacillus subtilis sub sp. subtilis GEB5 reveals its genetic assets for nematicidal and plant growth promoting mechanisms. Rhizosphere. 2024;31:100953. http://dx.doi.org/10.1016/j.rhisph.2024.100953

Downloads

Download data is not yet available.