Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Response surface methodology (RSM) for the growth optimization of Clonostachys rosea TNAU CR04 under varying temperatures, pH and water activity

DOI
https://doi.org/10.14719/pst.5383
Submitted
30 September 2024
Published
18-12-2024 — Updated on 15-04-2025
Versions

Abstract

This study examined the saprophytic fungus Clonostachys rosea TNAU (Tamil Nadu Agricultural University) CR04, noted for its strong antagonistic capabilities against several plant pathogens, as a prospective biological control agent in sustainable agriculture. Moreover, this study aimed to optimize the growth conditions of C. rosea by examining the interactive effects of temperature, pH and water activity (aw) on its mycelial development. To accomplish this objective, we employed response surface methodology (RSM), specifically using a Box Behnken design, which allowed for a systematic exploration of these three critical variables across 17 experimental trials. The analysis revealed that temperature and pH positively affected growth, whereas relatively high-water activity negatively affected growth. The ideal conditions identified were 30 °C, pH 6.5 and aw of 0.88, resulting in a maximum radial growth of 44.80 mm. Model validation showed a strong correlation between the predicted and actual
outcomes, with an R² value of 0.9901. This research underscores the necessity of optimizing environmental parameters to improve the efficacy of C. rosea in agricultural applications. Future studies should focus on validating these findings under field conditions and examining the influence of additional environmental variables on various C. rosea strains to enhance the formulation of biofungicides and promote sustainable pest and disease management.

References

  1. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species- Opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43-56. https: //doi.org/10.1038/nrmicro797
  2. Schroers HJ, Samuels GJ, Seifert KA, Gams W. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia. 1999;91(2):365-85. https://doi.org/10.1080/00275514.1999.12061028
  3. Broberg M, Dubey M, Iqbal M, Gudmundssson M, Ihrmark K, Schroers HJ, et al. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol Appl. 2021;14(2):476-97. https://doi.org/10.1111/eva.13134
  4. Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol. 2020;129(3):486-95. https://doi.org/10.1111/jam.14625
  5. Khairullina A, Micic N, Jørgensen HJL, Bjarnholt N, Bülow L, Collinge DB, Jensen B. Biocontrol effect of Clonostachys rosea on Fusarium graminearum infection and mycotoxin detoxification in oat (Avena sativa). Plants. 2023;12(3):500. https://doi.org/10.3390/ plants12030500
  6. Hasan R, Lv B, Uddin MJ, Chen Y, Fan L, Sun Z, et al. Monitoring mycoparasitism of Clonostachys rosea against Botrytis cinerea using GFP. J Fungi. 2022;8(6):567. https://doi.org/10.3390/jof8060567
  7. Venkatesan RM, Muthusamy K, Iruthayasamy J, Prithiviraj B, Kumaresan PV, Lakshmanan P, Perianadar IV. First report of Clonostachys rosea as a mycoparasite on Sclerotinia sclerotiorum causing head rot of cabbage in India. Plants. 2023;12(1):199. https://doi.org/10.3390/plants12010199
  8. Salamone AL, Gundersen B, Inglis DA. Clonostachys rosea, a potential biological control agent for Rhizoctonia solani AG-3 causing black scurf on potato. Biocontrol Sci Technol. 2018;28(9):895-900. https://doi.org/10.1080/09583157.2018.1498063
  9. Da Silva HAO, Teixeira WD, Borges ÁV, Junior ALS, Alves KS, Junior OMR, de Abreu LM. Biocontrol of potato early blight and suppression of Alternaria grandis sporulation by Clonostachys spp. Plant Pathol. 2021;70(7):1677-85. https://doi.org/10.1111/ppa.13402
  10. Nagaraj G, Rengasamy K, Thiruvengadam R, Karthikeyan M, Shanmugam V, Narayanan S. Morpho-molecular characterization of Clonostachys rosea and deciphering its biomolecules untangles the anti-fungal action against Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol. 2023;125:102013. https://doi.org/10.1016/j.pmpp.2023.102013
  11. Magan N, Lacey J. Ecological determinants of mould growth in stored grain. Int J Food Microbiol. 1988;7(3):245-56. https://doi.org/10.1016/0168-1605(88)90043-8
  12. Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Front Environ Sci. 2018;6:21. https://doi.org/10.3389/fenvs.2018.00021
  13. Zhao W, Hong SY, Kim JY, Om AS. Effects of temperature, pH and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biol. 2024;128(4):1885-97. https://doi.org/10.1016/j.funbio.2024.05.005
  14. Van Long NN, Vasseur V, Coroller L, Dantigny P, Le Panse S, Weill A, et al. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species. Int J Food Microbiol. 2017;241:151-60. https://doi.org/10.1016/j.ijfoodmicro.2016.10.022
  15. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Soleimani M. Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids Surf B Biointerfaces. 2011;82(1):33-39. https://doi.org/10.1016/j.colsurfb.2010.08.010
  16. Kim B, Kim J. Optimization of culture conditions for the production of biosurfactant by Bacillus subtilis JK-1 using response surface methodology. J Korean Soc Appl Biol Chem. 2013;56:279-87. https://doi.org/10.1007/s13765-013-3044-6
  17. de Cássia FS da Silva R, Rufino RD, Luna JM, Farias CB, Filho HJ, dos Santos VA, et al. Enhancement of biosurfactant production from Pseudomonas cepacia CCT6659 through optimisation of nutritional parameters using response surface methodology. Tenside Surfactants Deterg. 2013;50(2):137-42. https://doi.org/10.3139/113.110241
  18. Kumar AP, Janardhan A, Radha S, Viswanath B, Narasimha G. Statistical approach to optimize production of biosurfactant by Pseudomonas aeruginosa 2297. 3 Biotech. 2015;5:71-79. https://doi.org/10.1007/s13205-014-0203-3
  19. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc Series B (Methodological). 1951;13(1):1-38. https:// doi.org/10.1111/ j.2517 6161 .1951. tb00067.x
  20. Montgomery DC. Design and analysis of experiments. 13th ed. Hoboken: John Wiley & Sons, Inc.; 2005. p. 184–186.
  21. Quintavalla S, Parolari G. Effects of temperature, aw and pH on the growth of Bacillus cells and spores: A response surface methodology study. Int J Food Microbiol. 1993;19(3):207-16. https://doi.org/10.1016/0168-1605(93)90078-U
  22. Donato CJR, María JN, Cendoya E, Zachetti VGL, Ramirez ML. Interacting abiotic factors affect growth and mycotoxin production profiles of Alternaria section Alternaria strains on chickpea based media. Pathogens. 2023;12(4):565. https://doi.org/10.3390/ pathogens 12040565
  23. Begoude BAD, Lahlali R, Friel D, Tondje PR, Jijakli MH. Response surface methodology study of the combined effects of temperature, pH on the growth rate of Trichoderma asperellum. J Appl Microbiol. 2007;103(4):845-54. https://doi.org/10.1111/j.1365-2672.2007.03305.x
  24. Petlamul W, Prasertsan P. Spore production of entomopathogenic fungus Beauveria bassiana BNBCRC for biocontrol: Response surface optimization of medium using decanter cake from palm oil mill. J Korean Soc Appl Biol Chem. 2014;57:201-08. https://doi.org/10.1007/s13765-013-4175-5
  25. Mulatu A, Alemu T, Megersa N, Vetukuri RR. Optimization of culture conditions and production of bio-fungicides from Trichoderma species under solid-state fermentation using mathematical modeling. Microorganisms. 2021;9(8):1675. https://doi.org/ 10.3390/ microorganisms9081675
  26. Lindig A, Schwarz J, Hubmann G, Rosenthal K, Lütz S. Bivariate one strain many compounds designs expand the secondary metabolite production space in Corallococcus coralloides. Microorganisms. 2023;11(10):2592. https://doi.org/10.3390/microorganisms11102592
  27. Sachdev S, Singh A, Singh RP. Optimization of culture conditions for mass production and bio-formulation of Trichoderma using response surface methodology. 3 Biotech. 2018;8(8):360. https://doi.org/10.1007/s13205-018-1360-6
  28. Pasqualetti M, Gorrasi S, Giovannini V, Braconcini M, Fenice M. Polyextremophilic chitinolytic activity by a marine strain (IG119) of Clonostachys rosea. Molecules. 2022;27(3):688. https://doi.org/10.3390/molecules27030688
  29. Zhang Y, Gao X, Liu J, Ge Y. Pilot production of Clonostachys rosea conidia in a solid-state fermentor optimized using response surface methodology. Eng Life Sci. 2015;15(8):772-78. https://doi.org/10.1002/elsc.201400260
  30. Jia S, Li C, Wu K, Qi D, Wang S. Effect of water activity on conidia germination in Aspergillus flavus. Microorganisms. 2022;10(9):1744. https: //doi.org/10.3390/microorganisms10091744
  31. Dagno K, Lahlali R, Diourté M, Jijakli MH. Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes). J Appl Microbiol. 2011;110(2):521-28. https:// doi.org/ 10.1111/ j.1365-2672.2010.04908. x
  32. Daryaei A, Jones EE, Glare TR, Falloon RE. pH and water activity in culture media affect biological control activity of Trichoderma atroviride against Rhizoctonia solani. Biocontrol. 2016;92:24-30. https://doi.org/10.1016/j.biocontrol.2015.09.001
  33. Rishad KS, Rebello S, Nathan VK, Shabanamol S, Jisha MS. Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatal Agric Biotechnol. 2016;5:143. https://doi.org /10.1016 / j.bcab.2016.01.009

Downloads

Download data is not yet available.