Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Atmospheric cold plasma: A novel technique for microbial inactivation and quality preservation of spices and herbs

DOI
https://doi.org/10.14719/pst.5459
Submitted
2 October 2024
Published
28-12-2024
Versions

Abstract

The global production of spices and herbs has increased significantly in recent decades due to growing consumer demand. However, this expansion has been accompanied by a rise in foodborne illness outbreaks associated with these products, necessitating advancements in processing methods. Atmospheric cold plasma (ACP) has emerged as a promising food treatment technique for improving product safety and extending shelf life. This paper reviews the
application of ACP in spices and herbs processing, focusing on its microbial inactivation capabilities and its effects on nutritional and physico-chemical properties. While research generally supports the effectiveness of ACP, its impact varies significantly based on treatment parameters and the specific spice or herb being processed. Comprehending these variations is critical for optimizing ACP conditions to ensure the safety and quality of the final products. Further research is required to refine ACP applications tailored to different spices and herbs, providing deeper insight into its potential. The findings underscore the importance of customized processing strategies that meet safety standards while preserving the natural qualities of spices and herbs, catering to an increasingly health-conscious market. Additionally, the scalability of ACP technology for industrial applications remains an area of active investigation, as larger-scale processing introduces unique challenges. Addressing these challenges will be critical for the widespread adoption of ACP in the spice and herb industry, ensuring consistent outcomes across diverse production environments.

References

  1. 1. Caranta C, Dogimont C. Plant resistance to viruses: Natural resistance associated with recessive genes [Internet]. AGRIS -International System for Agricultural Science and Technology. Food and Agricultural Organization of the United Nations; 2008 [cited 2024 Dec 23]. Available from: https://agris.fao.org/search/en/providers/122439/records/6474735279cbb2c2c1b32248
  2. 2. Sachan AK, Kumar S, Kumari K, Singh D. Medicinal uses of spices used in our traditional culture: Worldwide. J Med Plants Stud. 2018;6(3):116-22.
  3. 3. Sharma M, Gupta A, Prasad R. A review on herbs, spices and functional food used in diseases. Int J Res Rev. 2017;4(1):103-108.
  4. 4. Sospedra I, Soriano JM, Mañes J. Assessment of the microbiological safety of dried spices and herbs commercialized in Spain. Plant Foods Hum Nutr. 2010;65:364-68. https://doi.org/10.1007/s11130-010-0186-0
  5. 5. Schweiggert U, Carle R, Schieber A. Conventional and alternative processes for spice production-A review. Trends
  6. Food Sci Technol. 2007;18(5):260-68. https://doi.org/10.1016/j.tifs.2007.01.005
  7. 6. Hassan AB, Ahmed SM, Sir Elkhatim KA, Abdelhalim TS, Fawale SO, Adiamo OQ, et al. Effect of gamma irradiation and microwave heating treatments on microbial load and antioxidant potentials in cinnamon, fennel and hot pepper.
  8. J Food Meas Charact. 2019;13:1130-38. https://doi.org/10.1007/s11694-018-00028-w
  9. 7. Kim JH, Shin MH, Hwang YJ, Srinivasan P, Kim JK, Park HJ, et al. Role of gamma irradiation on the natural antioxidants in cumin seeds. Radiat Phys Chem. 2009;78(2):153-57. https://doi.org/10.1016/j.radphyschem.2008.08.008
  10. 8. Pérez MB, Calderon NL, Croci CA. Radiation-induced enhancement of antioxidant activity in extracts of rosemary
  11. (Rosmarinus officinalis L.). Food Chem. 2007;104(2):585-92. https://doi.org/10.1016/j.foodchem.2006.12.009
  12. 9. Behera G, Sutar PP, Aditya S. Development of novel high power short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder (Curcuma longa L.). J Food Sci Technol. 2017;54:4078-91. https://doi.org/10.1007/s13197-017-2882-3
  13. 10. Dharini M, Jaspin S, Mahendran R. Cold plasma reactive species: Generation, properties and interaction with food biomolecules. Food Chem. 2023;405:134746. https://doi.org/10.1016/j.foodchem.2022.134746
  14. 11. Niveditha A, Pandiselvam R, Prasath VA, Singh SK, Gul K, Kothakota A. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control. 2021;130:108338. https://doi.org/10.1016/j.foodcont.2021.108338
  15. 12. Kim JE, Oh YJ, Won MY, Lee KS, Min SC. Microbial decontamination of onion powder using microwave-powered
  16. cold plasma treatments. Food Microbiol. 2017;62:112-23. https://doi.org/10.1016/j.fm.2016.10.006
  17. 13. Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014;38:128-36. https://doi.org/10.1016/j.fm.2013.08.019
  18. 14. Shanker MA, Khanashyam AC, Pandiselvam R, Joshi TJ, Thomas PE, Zhang Y, et al. Implications of cold plasma and plasma activated water on food texture-A review. Food Control. 2023;151:109793. https://doi.org/10.1016/j.foodcont.2023.109793
  19. 15. Lopes SJS, Sant'Ana AS, Freire L. Non-thermal emerging processing technologies: Mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Res Int. 2023;168:112727. https://doi.org/10.1016/j.foodres.2023.112727
  20. 16. Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma on different polyphenol compounds: A review. J Food Process Eng. 2023;46(1):e14203. https://doi.org/10.1111/jfpe.14203
  21. 17. Ozen E, Singh RK. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci Technol. 2020;103:144-51. https://doi.org/10.1016/j.tifs.2020.07.020
  22. 18. Bogaerts A, Neyts E, Gijbels R, Van der Mullen J. Gas discharge plasmas and their applications. Spectrochim Acta Part B At Spectrosc. 2002;57(4):609-58. https://doi.org/10.1016/S0584-8547(01)00406-2
  23. 19. Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016;55:39-47. https://doi.org/10.1016/j.tifs.2016.07.001
  24. 20. Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017;75:83-91. https://doi.org/10.1016/j.foodcont.2016.12.021
  25. 21. Pankaj SK, Wan Z, Keener KM. Effects of cold plasma on food quality: A review. Foods. 2018;7(1):4. https://doi.org/10.3390/foods7010004
  26. 22. Montie TC, Kelly-Wintenberg K, Roth JR. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci. 2000;28(1):41-50. https://doi.org/10.1109/27.842860
  27. 23. Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, et al. Microwave plasmas at atmospheric pressure. Contrib Plasma Phy. 2014;54(1):14-26.
  28. 24. Chang JS, Lawless PA, Yamamoto T. Corona discharge processes. IEEE Trans Plasma Sci. 1991;19(6):1152-66. https://doi.org/10.1109/27.125038
  29. 25. Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics and industrial applications. Plasma Chem. Plasma Process. 2003;23(1):1-46. https://doi.org/10.1023/A:1022470901385
  30. 26. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys. 2010;4(1):013002. https://doi.org/10.1088/0022-3727/44/1/013002
  31. 27. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta Part B At Spectrosc. 2006;61(1):2-30. https://doi.org/10.1016/j.sab.2005.10.003
  32. 28. Yong HI, Kim HJ, Park S, Alahakoon AU, Kim K, Choe W, et al. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiol. 2015;46:46-50. https://doi.org/10.1016/j.fm.2014.07.010
  33. 29. Jeong JY, Babayan SE, Tu VJ, Park J, Henins I, Hicks RF, et al. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci Technol. 1998;7(3):282. https://doi.org/10.1088/0963-0252/7/3/005
  34. 30. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma-a tool for decontamination and disinfection. Biotechnol Adv. 2015;33(6):1108-19. https://doi.org/10.1016/j.biotechadv.2015.01.002
  35. 31. Bang IH, Kim YE, Lee SY, Min SC. Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innov Food Sci Emerg Technol. 2020;63:102392. https://doi.org/10.1016/j.ifset.2020.102392
  36. 32. Kim JH, Min SC. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes. Food Control. 2018;84:321-29. https://doi.org/10.1016/j.foodcont.2017.08.018
  37. 33. Jeon EB, Choi MS, Kim JY, Park SY. Synergistic effects of mild heating and dielectric barrier discharge plasma on the reduction of Bacillus cereus in red pepper powder. Foods. 2020;9(2):171. https://doi.org/10.3390/foods9020171
  38. 34. Hemmati V, Garavand F, Goudarzi M, Sarlak Z, Cacciotti I, Tiwari BK. Cold atmospheric‐pressure plasma treatment of turmeric powder: Microbial load, essential oil profile, bioactivity and microstructure analyses. Int J Food Sci Technol. 2021;56(5):2224-32. https://doi.org/10.1111/ijfs.14838
  39. 35. Charoux CMG, Free L, Hinds LM, Vijayaraghavan RK, Daniels S, O'Donnell CP, et al. Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. Lwt. 2020;118:108716. https://doi.org/10.1016/j.lwt.2019.108716
  40. 36. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold
  41. atmospheric pressure plasma applications. Food Control. 2015;55:221-29. https://doi.org/10.1016/j.foodcont.2015.03.003
  42. 37. Hertwig C, Reineke K, Ehlbeck J, Erdoğdu B, Rauh C, Schlüter O. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J Food Eng. 2015;167:12-17. https://doi.org/10.1016/j.jfoodeng.2014.12.017
  43. 38. Butscher D, Van Loon H, Waskow A, von Rohr PR, Schuppler M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int J Food Microbiol. 2016;238:222-32. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006
  44. 39. Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, et al. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int. 2018;106:862-69. https://doi.org/10.1016/j.foodres.2018.01.066
  45. 40. Rezaee Z. Application of non-thermal plasma for decontamination of thyme and paprika. Int J Food Allied Sci.
  46. 2019;4(1):28-30.
  47. 41. Kahar SP, Shelar A, Annapure US. Effect of pin-to-plate atmospheric cold plasma (ACP) on microbial load and
  48. physicochemical properties in cinnamon, black pepper, and fennel. Food Res Int. 2024;177:113920. https://doi.org/10.1016/j.foodres.2023.113920
  49. 42. Kim JE, Oh YJ, Song AY, Min SC. Preservation of red pepper flakes using microwave‐combined cold plasma treatment. J Sci Food Agric. 2019;99(4):1577-85. https://doi.org/10.1002/jsfa.9336
  50. 43. Lee SY, In J, Chung MS, Min SC. Microbial decontamination of particulate food using a pilot-scale atmospheric plasma jet treatment system. J Food Eng. 2021;294:110436. https://doi.org/10.1016/j.jfoodeng.2020.110436
  51. 44. Darvish H, Ramezan Y, Khani MR, Kamkari A. Effect of low pressure cold plasma processing on decontamination and quality attributes of saffron (Crocus sativus L.). Food Sci Nutr. 2022;10(6):2082-90. https://doi.org/10.1002/fsn3.2824
  52. 45. García S, Iracheta F, Galván F, Heredia N. Microbiological survey of retail herbs and spices from Mexican markets. J Food Prot. 2001;64(1):99-103. https://doi.org/10.4315/0362-028X-64.1.99
  53. 46. Sun S, Anderson NM, Keller S. Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage. J Food Sci. 2014;79(12):E2441-E46. https://doi.org/10.1111/1750-3841.12696
  54. 47. Ranjan R, Gupta AK, Pandiselvam R, Chauhan AK, Akhtar S, Jha AK, et al. Plasma treatment: An alternative and sustainable green approach for decontamination of mycotoxin in dried food products. J Agr Food Res. 2023;14:100867. https://doi.org/10.1016/j.jafr.2023.100867
  55. 48. Noore S, Tiwari BK, Jambrak AR, Dukić J, Wanigasekara J, Curtin JF, et al. Extraction yield and biological activity of
  56. phycobiliproteins from Porphyridium purpureum using atmospheric cold plasma discharge and jet systems. LWT.
  57. 2023;187:115204. https://doi.org/10.1016/j.lwt.2023.115204
  58. 49. Orellana LE, de Lourdes Plaza M, Pérez F, Cedeño Y, Perales O. Non-thermal methods for food preservation. In: Juneja V, Dwivedi H, Sofos J, editors. Microbial Control and Food Preservation. Food Microbiology and Food Safety. Springer, New York; 2017. https://doi.org/10.1007/978-1-4939-7556-3_14
  59. 50. Kim JE, Choi HS, Lee DU, Min SC. Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper (Capsicum annum L.) flakes by microwave-combined cold plasma treatment. Int J Food Microbiol. 2017;263:61-66. https://doi.org/10.1016/j.ijfoodmicro.2017.09.014
  60. 51. Choi EJ, Yang HS, Park HW, Chun HH. Inactivation of Escherichia coli O157:H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. Lwt. 2018;93:477-84. https://doi.org/10.1016/j.lwt.2018.03.081
  61. 52. Amini M, Ghoranneviss M. Black and green tea decontamination by cold plasma. Int J Food Microbiol. 2016;11(1):42.
  62. 53. Wiktor A, Hrycak B, Jasiński M, Rybak K, Kieliszek M, Kraśniewska K, et al. Impact of atmospheric pressure
  63. microwave plasma treatment on quality of selected spices. Appl Sci. 2020;10(19):6815. https://doi.org/10.3390/app10196815
  64. 54. Zhang XL, Zhong CS, Mujumdar AS, Yang XH, Deng LZ, Wang J, et al. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). J99 Food Eng. 2019;241:51-57. https://doi.org/10.1016/j.jfoodeng.2018.08.002
  65. 55. Medvecká V, Mošovská S, Mikulajová A, Valík Ľ, Zahoranová A. Cold atmospheric pressure plasma decontamination of allspice berries and effect on qualitative characteristics. Eur Food Res Technol. 2020;246:2215-23. https://doi.org/10.1007/s00217-020-03566-0
  66. 56. Abarghuei FM, Etemadi M, Ramezanian A, Esehaghbeygi A, Alizargar J. An application of cold atmospheric plasma to enhance physiological and biochemical traits of basil. Plants. 2021;10(10):2088. https://doi.org/10.3390/plants10102088
  67. 57. Fadhlalmawla SA, Mohamed AAH, Almarashi JQM, Boutraa T. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum). Plasma Sci Technol. 2019;21(10):105503. https://doi.org/10.1088/2058-6272/ab2a3e
  68. 58. Abdi S, Dorranian D, Mohammadi K. Effect of oxygen on decontamination of cumin seeds by atmospheric pressure dielectric barrier discharge plasma. Plasma Med. 2016;6(3-4). https://doi.org/10.1615/PlasmaMed.2017019140
  69. 59. Shashikanthalu SP, Ramireddy L, Radhakrishnan M. Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. J Appl Res Med Aromat Plants. 2020;18:100259. https://doi.org/10.1016/j.jarmap.2020.100259
  70. 60. Song YS, Park YR, Ryu SM, Jeon HW, Eom SH, Lee SJ. Sterilization and quality variation of dried red pepper by
  71. atmospheric pressure dielectric barrier discharge plasma. Food Sci Preserv. 2016;23(7):960-66. https://doi.org/10.11002/kjfp.2016.23.7.960
  72. 61. Amini M, Ghoranneviss M, Abdijadid S. Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chem. 2017;235:290-93. https://doi.org/10.1016/j.foodchem.2017.05.067
  73. 62. Shokoohi F, Ebadi MT, Ghomi H, Ayyari M. Changes in qualitative characteristics of garden thyme (Thymus vulgaris L.) as affected by cold plasma. J Appl Res Med Aromat Plants. 2022;31:100411. https://doi.org/10.1016/j.jarmap.2022.100411
  74. 63. Lee JH, Sung TH, Lee KT, Kim MR. Effect of gamma‐irradiation on color, pungency and volatiles of korean red pepper powder. J Food Sci. 2004;69(8):C585-C92. https://doi.org/10.1111/j.1365-2621.2004.tb09904.x
  75. 64. Won MY, Lee SJ, Min SC. Mandarin preservation by microwave powered cold plasma treatment. Innov Food Sci Emerg Technol. 2017;39:25-32. https://doi.org/10.1016/j.ifset.2016.10.021
  76. 65. Kashfi AS, Ramezan Y, Khani MR. Simultaneous study of the antioxidant activity, microbial decontamination and color of dried peppermint (Mentha piperita L.) using low pressure cold plasma. LWT. 2020;123:109121. https://doi.org/10.1016/j.lwt.2020.109121
  77. 66. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000;55(6):481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  78. 67. Hosseini SI, Farrokhi N, Shokri K, Khani MR, Shokri B. Cold low pressure O2 plasma treatment of Crocus sativus: An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food Chem. 2018;257:310-15. https://doi.org/10.1016/j.foodchem.2018.03.031
  79. 68. Zarghami NS, Heinz DE. Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry. 1971;10(11):2755-61. https://doi.org/10.1016/S0031-9422(00)97275-3
  80. 69. Hertwig C, Meneses N, Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends Food Sci Technol. 2018;77:131-42. https://doi.org/10.1016/j.tifs.2018.05.011
  81. 70. Hertwig C, Steins V, Reineke K, Rademacher A, Klocke M, Rauh C, et al. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Front Microbiol. 2015;6:774. https://doi.org/10.3389/fmicb.2015.00774

Downloads

Download data is not yet available.