Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

An overview on the applications of nanotechnology in strawberry: A compendious review

DOI
https://doi.org/10.14719/pst.5472
Submitted
2 October 2024
Published
25-09-2025 — Updated on 17-10-2025
Versions

Abstract

Sustainability, food security and fertilizers are the most essential benefits that nanotechnology offers towards sustainable agriculture, which is viewed as a viable approach. This is crucial in improving the amount and quality of agricultural production. Despite having different means of application and various sources of mineral, organic, or chelated fertilizers, these fertilizers have limited efficiencies, with only 5 % nutrients added being used effectively. Therefore, nutrient loss through fertilization should be minimised by utilising nanotechnology/nanomaterial to enhance crop growth and productivity. Because of their reduced drug-loading capacity, the increased surface area-to-volume ratio causes only a substantial portion of an atom to be on the surface, resulting in high responsiveness, improved uptake and high mobility of nutrients by plants. Nanoformulations allow for the effective use of fewer fertilizers, pesticides and fungicides. The review will assist fruit scientists in planning strawberry experiments by applying nanotechnological techniques and be helpful in understanding the inclusive scope and application of nanotechnology in pomology, which will provide support to conventional methods of fruit production. 

References

  1. 1. Liu C, Zheng H, Sheng K, Liu W, Zheng L. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol Technol. 2018;139:47–55. https://doi.org/10.1016/j.postharvbio.2018.01.016
  2. 2. NHB. Indian Horticulture Database [Internet]. Gurgaon: National Horticulture Board; 2022 [cited 2025 Jul 24]. Available from: https://www.nhb.gov.in/.
  3. 3. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticle and nanostructured materials; History, source, toxicity and regulation. Beilstein J Nanotechnol. 2018;9:1050–74. https://doi.org/10.3762/bjnano.9.98
  4. 4. Bhattacharya A, Bhaumik A, Rani UP, Mandal SS, Epidi TT. Nano-particle-A recent approach to insect pest control. Afr J Biotechnol. 2010;9:3489–93.
  5. 5. FAO/WHO guidelines for the evaluation of probiotics in food [Internet]. London, Ontario: Food and Agriculture Organization of the United Nations/World Health Organization; 2002 [cited 2025 Jul 24]. Available from: www.fao.org
  6. 6. Naderi M, Shahraki DAA, Naderi R. Application of nanotechnology in the optimization of formulation of chemical fertilizers. Iran J Nanotechnol. 2011;12:16–23.
  7. 7. Chinnamuthu CR, Boopathi PM. Nanotechnology and agroecosystem. Madras Agric J. 2009;96:17–31. https://doi.org/10.29321/MAJ.10.100436
  8. 8. Subramanian KS, Tarafdar JC. Prospects of nanotechnology in Indian farming. Indian J Agric Sci. 2011;81:887–93.
  9. 9. Zahedi SM, Karimi M, Teixeira da Silva JA. The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric. 2020;100(1):25–31. https://doi.org/10.1002/jsfa.10004
  10. 10. De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5(2):9. https://doi.org/10.1038/nnano.2010.2
  11. 11. Maysinger D. Nanoparticles and cells: Good companions and doomed partnerships. Org Biomol Chem. 2007;5:2335. https://doi.org/10.1039/b704275b
  12. 12. Al-Hchami SHJ, Alrawi TK. Nano fertilizer, benefits and effects on fruit trees: A. Plant Arch. 2020;20(1):1085–88.
  13. 13. Mejias JH, Salazar F, Amaro LP, Hube S, Rodriguez M, Alfaro M. Nano fertilizer: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front Environ Sci. 2021;9:18–19. https://doi.org/10.3389/fenvs.2021.
  14. 635114
  15. 14. Dimkpa CO, Bindraban PS. Fortification of micronutrients for efficient agronomic production: A review. Agron Sustain Dev. 2016;36(1):7. https://doi.org/10.1007/s13593-015-0346-6
  16. 15. Guru T, Veronica N, Thatikunta R, Reddy SN. Crop nutrition management with Nanofertilizers. Int J Environ Sci Technol (IJEST). 2015;1(1):4–6.
  17. 16. Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res. 2005;104:83–91. https://doi.org/10.1385/BTER:104:1:083
  18. 17. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. In: Rai M, et al., editors. Nanotechnologies in food and agriculture. Cham: Springer; 2015. p. 69‒80. https://doi.org/10.
  19. 1007/978-3-319-14024-7_3
  20. 18. Baruah S, Dutta J. Nanotechnology applications in sensing and pollution degradation in agriculture. Environ Chem Lett. 2009;7:191–204. https://doi.org/10.1007/s10311-009-0228-8
  21. 19. Tarafdar JC, Agarwal A, Raliya R, Kumar P, Burman U, Kaul RK. ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus Fungi. Adv Sci Eng Med. 2012;4:1–5. https://doi.org/10.1166/asem.
  22. 2012.1160
  23. 20. Roemheld V, El-Fouly MM. Foliar nutrient application challenges and limits in crop production. Proceedings of the 2nd International Workshop on Foliar Fertilization, Bangkok, Thailand; 1999. 4–10
  24. 21. Abou-El-Nour EAA. Can supplemented potassium foliar feeding reduce the recommended soil potassium. Pak J
  25. Biol Sci. 2002;5:259–62. https://doi.org/10.3923/pjbs.2002.259.262
  26. 22. Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G. Nanotechnology in sustainable agriculture: Studies from seed priming to postharvest management. Nanotechnol Environ Eng. 2019;4(1):11. https://doi.org/10.
  27. 1007/s41204-019-0058-2
  28. 23. Schader C. Cost-effectiveness of organic farming for achieving environmental policy targets in Switzerland [dissertation]. Aberystwyth (Wales): Aberystwyth University; 2009
  29. 24. Ditta A, Arshad M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev. 2016;5:209–29. https://doi.org/10.1515/ntrev-2015-0060
  30. 25. Sharonova NL, Yapparov AK, Khisamutdinov NS, Ezhkova AM, Yapparov IA, Ezhkov VO, et al. Nanostructured waterphosphorite suspension is a new promising fertilizer. Nanotechnol Rus. 2015;10:651–61. https://doi.org/10.113
  31. 4/S1995078015040187
  32. 26. Noreen S, Fatima Z, Ahmad S, Ashraf M. Foliar application of micronutrients in mitigating abiotic stress in crop plants plant nutrients and abiotic stress tolerance. In: Plant nutrients and abiotic stress tolerance. Singapore: Springer; 2018. https://doi.org/10.1007/978-981-10-9044-8_3
  33. 27. Broadley MR. Zinc in plants. New Phytol. 2007;173:677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  34. 28. Lindsay WL. Zinc in soils and plant nutrition. Adv Agron. 1972;24:147–86. https://doi.org/10.1016/S0065-2113(08)
  35. 60635-5
  36. 29. Lindsay WL, Schwab AP. The chemistry of iron in soils and its availability to plants. J Plant Nutr. 1982;5:821–40. https://doi.org/10.1080/01904168209363012
  37. 30. Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K. Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett. 2019;17:65–121. https://doi.org/10.1007/s10311-018-0778-8
  38. 31. Malusá E, Vassilev N. A contribution to set a legal framework for biofertilizers. Appl Microbiol Biotechnol. 2014;98:6599–607. https://doi.org/10.1007/s00253-014-5828-y
  39. 32. Jubeir SM, Ahmed WA. Effect of nano-fertilizers and application methods on vegetative growth and yield of date palm. Iraqi J Agric Sci. 2019;50:267–74.
  40. 33. Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates: A review. J Control Release. 2008;128:185–99. https://doi.org/10.1016/j.jconrel.2008.02.007
  41. 34. Saifullah M, Shishir MRI, Ferdowsi R, Rahman MRT, Van-Vuong Q. Micro and nanoencapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol. 2019;86:230–51. https://doi.org/10.1016/j.tifs.2019.02.030
  42. 35. El-Saadony MT, Lmoshadak AS, Shafi ME, Albaqami NM, Saad AM, El-Tahan AM, et al. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity updated review. Saudi J Biol Sci. 2021;28(12):7349–59. https://doi.org/10.1016/j.sjbs.2021.08.032
  43. 36. Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V. Nanofertilizers for sustainable fruit production: A review. Environ Chem Lett. 2021;19:1693–714. https://doi.org/10.1007/s10311-020-01125-3
  44. 37. Naderi MR, Abedi A. Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol. 2012;11(1):18–26.
  45. 38. Bayat M, Pakina E, Astarkhanova T, Sediqi AN, Zargar M, Vvedenskiy V. Review on agro-nanotechnology for ameliorating strawberry cultivation. Res Crops. 2019;20(4):731–36. https://doi.org/10.31830/2348-7542.2019.108
  46. 39. Ahmad R, Ali S, Rizwan M, Abbasi GH, Zahir ZA. Nanofertilizers and their roles in sustainable agriculture. ACS Sustain Chem Eng. 2019;7(18):15881–93.
  47. 40. Rajendran K, Aswath C, Selvaraj R. Zinc oxide nano fertilizer enhances the growth, yield and economics of strawberry. Sci Hortic. 2017;225:225–32.
  48. 41. Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42(2):5580–85. https://doi.org/10.1021/es800422x
  49. 42. Salama HM, Al-Obeed RS. Foliar application of copper oxide nanoparticles enhances growth, yield and fruit quality of strawberry. Int J Agric Biol. 2019;22(6):1223–29.
  50. 43. Li X, Zhang X, Li W, Zhang X. Effect of titanium dioxide nanoparticles on the growth and physiology of strawberry plants. PLoS One. 2018;13(6):e0199286.
  51. 44. Sabir A. Improvement of the pollen quality and germination levels in grapes (Vitis vinifera L.) by leaf pulverizations with nano size calcite and seaweed extract (Ascophyllum nodosum). J Anim Plant Sci. 2015;25:1599–605.
  52. 45. Khan MN, Mobin M, Abbas ZK, Al-Shaeri M, Siddiqui MH. Zinc oxide nanoparticles enhance the growth and yield of strawberry plants. Sci Hortic. 2017;219:191–97.
  53. 46. Etesami H, Ghanbari A, Alikhani HA, Khoshkholgh-Sima NA. Foliar application of copper oxide nanoparticles enhances growth, yield and physiological responses of strawberry plants. Appl Nanosci. 2017;7(7):581–88.
  54. 47. Rashid MI, Maqbool Z, Khalid N, Naveed M, Shahid M. Iron oxide nanoparticles regulate plant growth, fruit yield and quality of strawberry plants under foliar spray. Ecotoxicol Environ Saf. 2021;215:112163.
  55. 48. Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. Naunyn-Schmiedeberg's Arch Pharmacol. 2024 Jan;397(1):77‒97. https://doi.org/10.1007/s00210-023-02662-8
  56. 49. Rana RA, Siddiqui MN, Skalicky M, Brestic M, Hossain A, Kayesh E, et al. Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Hortic. 2021;7(10):332. https://doi.org/10.3390/horticulturae7100
  57. 332
  58. 50. Zhang Z, Li M, Chen W, Zhu S, Lui N, Zhu L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano hydroxyapatite. Environ Pollut. 2010;158:514–19. https://doi.org/10.1016/j.envpol.2009.08.024
  59. 51. Huang S, Wang L, Lui L, Hou Y, Li L. Nanotechnology in agriculture, livestock and aquaculture in China- A review. Agron Sustain Dev. 2015;35. https://doi.org/10.1007/s13593-014-0274-x
  60. 52. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. TiO2 nanoparticle as an effect nano pesticide for cotton leafworm. Agri Eng Int: CIGR J. 2017;19(61):61–68.
  61. 53. Rana VS, Sharma V, Sharma S, Rana N, Kumar V, Sharma U, et al. Seaweed extract as a biostimulant agent to enhance the fruit growth, yield and quality of kiwifruit. Hortic. 2023;9(4):432. https://doi.org/10.3390/horticulturae
  62. 9040432
  63. 54. Mahmud MS, Zaman QU, Esau TJ, Chang YK, Price GW, Prithiviraj B. Real-time detection of strawberry powdery mildew disease using a mobile machine vision system. Agron. 2020;10(7):1027. https://doi.org/10.3390/agronomy
  64. 10071027
  65. 55. Elizabath A, Babychan M, Mathew AM, Syriac GM. Application of nanotechnology in agriculture. Int J Pure Appl Biosci. 2019;7(2):131–39. https://doi.org/10.18782/2320-7051.6493
  66. 56. Mahanta N, Dambale A, Rajkhowa M, Mahanta C, Mahanta N. Nutrient use efficiency through Nanofertilizers. Int J Chem Stud. 2019;7(3):2839–42.
  67. 57. Vargas ERL, Ortiz HO, Pliego GC, Romenus KDA, Fuente CDL, Mendoza AB, et al. Foliar application of copper nanoparticle increases the fruit quality and the content of bioactive components in tomatoes. Appl Sci. 2018;8(7):1020. https://doi.org/10.3390/app8071020
  68. 58. Weber CN, Koron D, Jakopi J, Veberi R, Hudina M, Cesnik BH. Influence of nitrogen, calcium and nano-fertilizer on strawberry (Fragaria × ananassa Duch.) fruit inner and outer quality. Agron. 2021;11:997. https://doi.org/10.3390/agronomy11050997
  69. 59. Kumar A, Rajan R, Pandey K, Ramprasad RR, Kaur G, Vamshi T, Singh T. Impact of new generation plant growth regulators on fruit crops–A review. Hortic Sci. 2024;51(1):1‒22. https://doi.org/10.17221/166/2022-HORTSCI
  70. 60. Rai RV, Bai JA. Nanoparticles and their potential application as antimicrobials. In: A_. Méndez V, editor. Science against microbial pathogens: Communicating current research and tech; 2011. p.197-209.
  71. 61. Mahdizadeh V, Safaie N, Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot. 2015;4:291–300.
  72. 62. Kah M. Nano pesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation. Front Chem. 2015;3:1–6. https://doi.org/10.3389/fchem.2015.00064
  73. 63. Stepanova M, Skalny A, Miroshnichenko S, Seregin I. Environmental and health risks of nanofertilizers: A review. J Hazard Mater. 2020;383:121–85.
  74. 64. Guo S, Huang J, Jiang S, Cai Q, Zhao Y. Application of nanotechnology in agriculture: Prospects and challenges crop journal. Crop J. 2017;5(1):1–12.
  75. 65. Malakouti MJ, Dadpour MR. Nano-fertilizers and their roles in sustainable agriculture. Int J Agric Biol. 2017;19(5):1243–50.
  76. 66. Sharpley AN, Bergström L, Aronsson H, Bechmann M, Bolster C, Börling K, et al. Future agriculture with minimized phosphorus losses to waters: research needs and direction. Ambio. 2015;44(2):163–79. https://doi.org/
  77. 10.1007/s13280-014-0612-x
  78. 67. Abd-Elrahman SH, El-Gabry YAEG, Hashem FA, Ibrahim MFM, El-Hallous EI, Abbas ZK, et al. Influence of nano-chitosan loaded with potassium-on-potassium fractionation in sandy soil and strawberry productivity and quality. Agron. 2023;13:11–26. https://doi.org/10.3390/agronomy13041126
  79. 68. El-Bialy SM, El-Mahrouk ME, Elesawy T, Omara AED, Elbehiry F, El-Ramady H, et al. Biological nanofertilizers to enhance growth potential of strawberry seedlings by boosting photosynthetic pigments, plant enzymatic antioxidants and nutritional status. Plants. 2023;12(2):302. https://doi.org/10.3390/plants12020302
  80. 69. Al-Qadi RA, Alimam NMA. Response of three varieties of strawberry to the nano-npk fertilizer, humic acid. Int J Agric Stat Sci. 2023;19(1):89–99. https://doi.org/10.59467/IJASS.2023.19.89
  81. 70. Singh RK, Mishra S, Bahadur V. Effect of nano-chitosan, nano-micronutrients and bio capsules on yield and quality of strawberry (Fragaria × ananassa) cv. Winter Dawn. Biol Forum - Int J. 2023;15(5):289–95.
  82. 71. Mustafa NS, Moustafa YTA, El-Dahshouri MF, EL-Sawy SMM, Eman S, El Hady LF, et al. Combination vermicompost and nano-fertilizer applications and its impact on growth performance of strawberry. Middle East J Agric Res. 2022;11(1):70‒80. https://doi.org/10.36632/mejar/2022.11.1.7
  83. 72. Sadeghi P, Hassanpour H. Foliar application of zinc chelate nanoparticles on quantitative and qualitative characteristics of Sabrina strawberry cultivar in different solubilization conditions. J Hortic Sci. 2022;36(2):471–87.
  84. 73. Alzahrani NA, Aljaddani AA, Alzahrani AA, Alsoufi MS, El-Gaaly GA. Impact of zinc oxide nanoparticles on the growth and yield of strawberry plants. Nanosci Nanotechnol Lett. 2021;13(2):181–86.
  85. 74. Saini S, Kumar P, Sharma NC, Sharma N, Balachandar D. Nano-enabled Zn fertilization against conventional Zn analogs in strawberry (Fragaria × ananassa Duch). Sci Hortic. 2021;282:110016. https://doi.org/10.1016/j.scienta.
  86. 2021.110016
  87. 75. Madani H, Sharifi RS. Effect of nano-chelated iron on vegetative growth and physiological traits of strawberry. Sci Hortic. 2020;262:109096.
  88. 76. Xie Y, Zhu H, Chen J, Zhao X. Effect of nano calcium carbonate fertilizer on the growth and development of strawberry. J Plant Nutr. 2020;43(7):972–81.
  89. 77. Fattahi M, Fattahi S, Mousavi SM. Effect of foliar application of boron on growth, yield and fruit quality of strawberry cv. Selva. J Plant Nutr. 2018;41(5):645–52.
  90. 78. Dikilitas M, Yildirim E, Avc M. Foliar boron application improves the growth, yield and quality of strawberry. J Plant Nutr. 2016;39(12):1749–57.
  91. 79. Mahmood MM, Al-Dulaimy AF. Response of strawberry CV. festival to culture media and foliar application of nano and normal micronutrients. IOP Conf Ser Earth Environ Sci; 2021. 904:12–67 https://doi.org/10.1088/1755-1315/904/
  92. 1/012067
  93. 80. Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ Chem Letters. 2017 Mar;15(1):15‒22. https://doi.org/10.1007/s10311-016-0600-4
  94. 81. Chaeikar SM, Golozani GK. Effect of foliar application of nano-boron fertilizer on quantitative and qualitative characteristics of strawberry. J Plant Nutr. 2019;42(15):1796–802.
  95. 82. Shahabivand S, Ghorbanpour M, Khoshgoftarmanesh AH. Nano-silicon fertilization improves yield and fruit quality of strawberry. J Plant Nutr Soil Sci. 2019;182(1):76–82.
  96. 83. Safari M, Ghanati F, Hajiboland R, Rezazadeh SH. Effects of foliar application of iron oxide nanoparticles on growth and physiological traits of strawberry plants. Sci Hortic. 2017;219:248–55.
  97. 84. Thakur V, Sharma S, Kumar A, Kumar R. Unraveling nanoparticles efficiency in solanaceae crops: Mechanistic understanding, action and stress mitigation approaches. Ecol Front. 2024;44(6):1097–108. https://doi.org/10.1016/j.ecofro.2024.05.004
  98. 85. Abdullah KM, Amran HA, Kadhim ZK, Lateef SM. Effect of spraying with normal and Nano NPK fertilizers and their interference in growth indicators of strawberry seedlings Fragaria ananassa Duch. Ruby gem cultivar. J Kerbala Agric. 2021;1:8. https://doi.org/10.59658/jkas.v8i1.877
  99. 86. Samimi Z, Rezaei M, Sajedi NA. Impact of foliar application of iron oxide nanoparticles on growth, yield and fruit quality of strawberry (Fragaria × ananassa). Sci Hortic. 2021;278.
  100. 87. Qayyum MF, Rizwan M, Rehman MZ, Ali S, Sohail MI, Khalid H, et al. Nano-copper oxide prime induced growth, yield enhancement and metal immobilization of strawberry (Fragaria × ananassa Duch.). J Plant Nutr. 2021;44(13):2022–37.
  101. 88. Abbasi AR, Hajiboland R, Sadeghzadeh B. Effects of different sources and concentrations of zinc oxide nanoparticles on strawberry (Fragaria × ananassa) growth, yield and fruit quality. J Plant Nutr. 2020;43(15):2187–98.
  102. 89. El-Shewy HM, Abd El-Kader SM, El-Ghany EMA, El-Komy MA. Nano-copper as a promising alternative fungicide against strawberry Botrytis cinerea. Ecotoxicol Environ Saf. 2020;194:110459.
  103. 90. El-Banna AA, Abdel-Alim MA, Abd-Elrahman MA. Nano chitosan as a potential tool in integrated pest management: A review. Int J Biol Macromol. 2019;130:597–612.
  104. 91. El-Ghany EMA, El-Komy MA, Abd El-Kader SM, El-Shewy HM. Nano-silver as a promising alternative fungicide against strawberry powdery mildew. Sci Hortic. 2019;249:431–37.
  105. 92. Zhang Y, Chen Y, Li J, Hu Q. Nano-chitosan as a new carrier for controlled-release of pesticide. Mater Sci Eng. 2017;81:40–48.
  106. 93. Ahmed A, Khan MS, Musarrat J. Nano chitosan-mediated abiotic stress tolerance in plants: A review. Plant Physiol Biochem. 2017;111:14–26.
  107. 94. El-Katatny MH, Mahmoud SE. Nano copper for controlling powdery mildew and gray mold diseases of strawberry plants. J Plant Dis Prot. 2017;124(1):1–7.
  108. 95. Sharma S, Sharma G, Kumar P, Likhita J, Dhanapati K, Attri D, et al. Unveiling the potential of nanotechnological approaches in biological system for sustainable production and crop resilience against stress. Ecological Frontiers. 2025;(xx):1‒19. https://doi.org/10.1016/j.ecofro.2025.06.020

Downloads

Download data is not yet available.