Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Endophytic entomopathogens: An ecofriendly way for pest management

DOI
https://doi.org/10.14719/pst.5483
Submitted
2 October 2024
Published
19-06-2025

Abstract

Global food security poses a significant challenge in meeting the needs of a rapidly growing population. Currently, producers rely on chemical pesticides to overcome pest-related problems in crop husbandry. However, the extensive use of synthetic molecules results in environmental pollution, resistance development, residual toxicity, pest recurrence and negative impacts on human and animal health. The expanding worldwide population has generated a substantial need for agricultural goods in terms of both quality and quantity, leading to a notable rise in the application of agricultural chemicals, including chemical pesticides, to combat insect pests. As a result, the use of entomopathogens for biological control has emerged as a prominent choice among these options. Currently, farmers are using microbial biopesticide solutions to counteract the negative effects of specific insects on crops. Microbes present a sustainable and adaptable solution that can effectively combat harmful pests without causing significant economic damage while simultaneously improving the health and productivity of plants. In 2020, biopesticides held a 6 % share in the global pesticide industry, with projections indicating a twofold increase to approximately 15 % by 2031. The purpose of this review was to highlight the widely accessible endophytic entomopathogens and explore their potential as a substitute for chemical pesticides. The primary goal of using endophytic entomopathogens is to maintain an optimal level of production, improve environmental well-being, reduce pesticide use and conserve natural resources. Moreover, research is now being conducted to investigate further potential characteristics, particularly concentrating on effective and rapidly spreading endophytic entomopathogens. This paper presents an overview of the mechanisms of action and the resistance they provide against herbivore insects, along with their respective benefits and limitations.

References

  1. 1. Thacker JR. An introduction to arthropod pest control. Cambridge University Press; 2002 Oct 17.
  2. 2. Fanning PD, Grieshop MJ, Isaacs R. Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. J Appl Entomol. 2018 Feb;142(1-2):26‒32. https://doi.org/10.1111/jen.12462
  3. 3. Saha T, Chandran N, Anu BC. Major insect pests of vegetable crops in bihar and their management. In: Sustainable Agriculture. Apple Academic Press; 2020 May 21. pp. 395‒429.
  4. https://doi.org/10.1201/9780429325830-23
  5. 4. Bamisile BS, Akutse KS, Siddiqui JA, Xu Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges and insights for next-generation sustainable agriculture. Front Plant Sci. 2021 Sep 30;12:741804. https://doi.org/10.3389/fpls.2021.741804
  6. 5. Oerke EC. Crop losses to pests. The J Agri Sci. 2006 Feb;144(1):31‒43. https://doi.org/10.1017/S0021859605005708
  7. 6. Mart M. Pesticides, a love story: America's enduring embrace of dangerous chemicals. University Press of Kansas; 2018 Jan 26.
  8. 7. Fadiji AE, Babalola OO. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci. 2020 Dec 1;27(12):3622‒33. https://doi.org/10.1016/j.sjbs.2020.08.002
  9. 8. Gibb T, Gibb T. Making management recommendations using IPM. Contemporary Insect Diagnostics. Elsevier. Elsevier. 2015;279‒305. https://doi.org/10.1016/B978-0-12-404623-8.00008-9
  10. 9. Alemu M. Trend of biotechnology applications in pest management: a review. Int J Appl Sci Biotechnol. 2020 Jun 25;8(2):108‒31. https://doi.org/10.3126/ijasbt.v8i2.28326
  11. 10. Lewis WJ, Van Lenteren JC, Phatak SC, Tumlinson Iii JH. A total system approach to sustainable pest management. Proceed of the National Academy of Sci. 1997 Nov 11;94(23):12243‒48.
  12. https://doi.org/10.1073/pnas.94.23.12243
  13. 11. Gurr GM, Wratten SD, Altieri MA. Ecological engineering: a new direction for agricultural pest management. Australian Farm Business Manag J. 2004 Jan 1;1(1):28‒35.
  14. 12. Nicholson GM. Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon. 2007 Mar 15;49(4):413‒22. https://doi.org/10.1016/j.toxicon.2006.11.028
  15. 13. Deka B, Baruah C, Babu A. Entomopathogenic microorganisms: their role in insect pest management. Egyptian J Biol Pest Control. 2021 Dec;31:1‒8. https://doi.org/10.1186/s41938-021
  16. -00466-7
  17. 14. Boro M, Sannyasi S, Chettri D, Verma AK. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Archives Microb. 2022 Nov;204(11):666.
  18. https://doi.org/10.1007/s00203-022-03279-w
  19. 15. Porter JR. Agostino Bassi bicentennial (1773-1973). Bacterio Rev. 1973 Sep;37(3):284‒88.
  20. https://doi.org/10.1128/MMBR.37.3.284-288.1973
  21. 16. Sharma R, Sharma P. Fungal entomopathogens: a systematic review. Egyptian J Biol Pest Control. 2021 Dec;31:1‒3. https://doi.org/10.1186/s41938-021-00404-7
  22. 17. Musser FR, Nyrop JP, Shelton AM. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J Economic Entomol. 2006 Oct 1;99(5):1538‒49. https://doi.org/10.1093/jee/99.5.1538
  23. 18. Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microb and Mol Biol Rev. 2007 Jun;71(2):255‒81. https://doi.org/10.1128/MMBR.00034-06
  24. 19. Shimizu M. Endophytic actinomycetes: biocontrol agents and growth promoters. Bacteria in Agrobiology: Plant Growth Responses. 2011;201‒20. https://doi.org/10.1007/978-3-642-20332-9_10
  25. 20. St Leger RJ, Joshi L, Bidochka MJ, Roberts DW. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proceed of the Nat Acad Sci. 1996 Jun 25;93(13):6349‒54.
  26. https://doi.org/10.1073/pnas.93.13.6349
  27. 21. Sforza RF. The diversity of biological control agents. Biological control: A global endeavour (PG Mason ed.). CSIRO Publishing, Canberra (Accepted); 2021
  28. 22. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007 Dec 1;43(3):237‒56. https://doi.org/10.1016/j.biocontrol.2007.08.001
  29. 23. Jindal VI, Dhaliwal GS, Koul OP. Pest management in 21st century: roadmap for future. Biopest Int. 2013;9(1):22.
  30. 24. Hossain MA, Hossain MS, Akter M. Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiol and Mol Plant Path. 2023 Jul 1;126:102029.
  31. https://doi.org/10.1016/j.pmpp.2023.102029
  32. 25. Jamunarani GS, Ramanagouda SH, Venkateshalu B, Jayappa J, Raghavendra G, Rudresh DL, et al. Isolation and evaluation of indigenous endophytic entomopathogenic fungus, Beauveria bassiana UHSB-END1 (Hypocreales: Cordycipitaceae), against Spodoptera litura Fabricius. Egyptian J Biol Pest Control. 2022 Oct 23;32(1):120.
  33. https://doi.org/10.1186/s41938-022-00617-4
  34. 26. Bamisile BS, Afolabi OG, Siddiqui JA, Xu Y. Endophytic insect pathogenic fungi-host plant-herbivore mutualism: elucidating the mechanisms involved in the tripartite interactions. World J Microb and Biotech. 2023 Dec;39(12):326. https://doi.org/10.1007/s11274-023-03780-4
  35. 27. Jaber LR, Enkerli J. Fungal entomopathogens as endophytes: can they promote plant growth?. Biocontrol Sci and Techno. 2017 Jan 2;27(1):28‒41. https://doi.org/10.1080/09583157.2016.1243227
  36. 28. Thapa S, Prasanna R. Prospecting the characteristics and significance of the phyllosphere microbiome. Annals Microb. 2018 May;68:229‒45. https://doi.org/10.1007/s13213-018-1331-5
  37. 29. Mishra S, Bhattacharjee A, Sharma S. An ecological insight into the multifaceted world of plant-endophyte association. Critical Rev Plant Sci. 2021 Mar 4;40(2):127‒46.
  38. https://doi.org/10.1080/07352689.2021.1901044
  39. 30. Mina D, Pereira JA, Lino-Neto T, Baptista P. Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microbl Ecology. 2020 Jul;80:145‒57.
  40. https://doi.org/10.1007/s00248-020-01488-8
  41. 31. Dash CK, Bamisile BS, Keppanan R, Qasim M, Lin Y, Islam SU, et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis. 2018 Dec 1;125:385‒92. https://doi.org/10.1016/j.micpath.2018.09.044
  42. 32. Quesada-Moraga E, Landa BB, Muñoz-Ledesma J, Jiménez-Diáz RM, Santiago-Alvarez C. Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia. 2006 May;161:323‒29. https://doi.org/10.1007/s11046-006-0014-0
  43. 33. Zhang J, Ye C, Wang ZG, Ding BY, Smagghe G, Zhang Y, et al. DsRNAs spray enhanced the virulence of entomopathogenic fungi Beauveria bassiana in aphid control. J Pest Sci. 2023 Jan;96(1):241‒51. https://doi.org/10.1007/s10340-022-01508-1
  44. 34. Pavlyushin V. Pathogenic post-effect of entomopathogenic fungi on phytophagous pests and entomophagous biocontrol agents. In: BIO Web of Conferences; 2020. Vol. 21: p. 00020. EDP Sciences. https://doi.org/10.1051/bioconf/20202100020
  45. 35. Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control. 2016 Apr 1;95:40‒48. https://doi.org/10.1016/j.biocontrol.2016.01.002
  46. 36. Fingu-Mabola JC, Bawin T, Francis F. Direct and indirect effect via endophytism of entomopathogenic fungi on the fitness of Myzus persicae and its ability to spread PLRV on tobacco. Insects. 2021 Jan 21;12(2):89. https://doi.org/10.3390/insects12020089
  47. 37. Gurulingappa P, Sword GA, Murdoch G, McGee PA. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control. 2010 Oct 1;55(1):34‒41. https://doi.org/10.1016/j.biocontrol.2010.06.011
  48. 38. Akello J, Dubois T, Coyne D, Kyamanywa S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection. 2008 Nov 1;27(11):1437‒41. https://doi.org/10.1016/j.cropro.2008.07.003
  49. 39. Arnold AE, Lewis LC. Ecology and evolution of fungal endophytes and their roles against insects. Insect-Fungal Associations: Ecology and Evolution. Oxford University Press, New York. 2005 Feb 3;74‒96. https://doi.org/10.1093/oso/9780195166521.003.0004
  50. 40. Vega FE, Posada F, Peterson SW, Gianfagna TJ, Chaves F. Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia. 2006 Jan 1;98(1):31‒42. https://doi.org/10.3852/mycologia.98.1.31
  51. 41. Posada F, Vega FE. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia. 2005 Nov 1;97(6):1195‒200. https://doi.org/10.3852/mycologia.97.6.1195
  52. 42. Gómez-Vidal S, Lopez-Llorca LV, Jansson HB, Salinas J. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron. 2006 Oct 1;37(7):624‒32.
  53. https://doi.org/10.1016/j.micron.2006.02.003
  54. 43. Clifton EH, Jaronski ST, Coates BS, Hodgson EW, Gassmann AJ. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PloS One. 2018 Mar 22;13(3):e0194815. https://doi.org/10.1371/journal.pone.
  55. 0194815
  56. 44. Batta YA. Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L. (Yponomeutidae: Lepidoptera) infesting Brassica napus plants. Crop Protect. 2013 Feb 1;44:128‒34. https://doi.org/10.1016/j.cropro.2012.11.001
  57. 45. Akutse KS, Maniania NK, Fiaboe KK, Van den Berg J, Ekesi SJ. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013 Aug 1;6(4):293‒301. https://doi.org/10.1016/j.funeco.2013.01.003
  58. 46. Darsouei R, Karimi J, Stelinski LL. Endophytic colonization of sugar beet by Beauveria varroae and Beauveria bassiana reduces performance and host preference in army worm, Spodoptera littoralis. Crop Protect. 2024 Jan 1;175:106441. https://doi.org/10.1016/j.cropro.2023.106441
  59. 47. Guesmi-Jouini J, Garrido-Jurado I, López-Díaz C, Halima-Kamel MB, Quesada-Moraga E. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. J Invertebrate Pathology. 2014 Jun 1;119:1‒4. https://doi.org/10.1016/j.jip.2014.03.004
  60. 48. Clement SL, Elberson LR, Bosque‐Perez NA, Schotzko DJ. Detrimental and neutral effects of wild barley–Neotyphodium fungal endophyte associations on insect survival. Entomologia Experimentalis et Applicata. 2005 Feb;114(2):119‒25. https://doi.org/10.1111/j.1570-7458.2005.00236.x
  61. 49. Jallow MF, Cunningham JP, Zalucki MP. Intra-specific variation for host plant use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for management. Crop Protect. 2004 Oct 1;23(10):955‒64. https://doi.org/10.1016/j.cropro.2004.02.008
  62. 50. Brownbridge M, Reay SD, Nelson TL, Glare TR. Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biol Control. 2012 Jun 1;61(3):194‒200. https://doi.org/10.1016/j.biocontrol.2012.01.002
  63. 51. Li H, Soares MA, Torres MS, Bergen M, White Jr JF. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. J Plant Interactions. 2015 Jan 1;10(1):224‒29. https://doi.org/10.1080/17429145.2015.1056261
  64. 52. Gai CS, Dini-Andreote F, Andreote FD, Lopes JR, Araújo WL, Miller TA, et al. Endophytic bacteria associated to sharpshooters (Hemiptera: Cicadellidae), insect vectors of Xylella fastidiosa subsp. pauca. J Plant Pathol Microbiol. 2011;2(109):2.
  65. 53. Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res. 2022 Mar 1;256:126956. https://doi.org/10.1016/j.micres.2021.126956
  66. 54. Ansari WA, Krishna R, Zeyad MT, Singh S, Yadav A. Endophytic actinomycetes-mediated modulation of defense and systemic resistance confers host plant fitness under biotic stress conditions. Microbial Versatility in Varied Environments: Microbes in Sensitive Environments. 2020;167‒80. https://doi.org/10.1007/978-981-15-3028-9_10
  67. 55. Debbab A, Aly AH, Proksch P. Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers. 2012 Nov;57:45‒83. https://doi.org/10.1007/s13225-012-
  68. 0191-8
  69. 56. Fontana DC, de Paula S, Torres AG, de Souza VH, Pascholati SF, Schmidt D, Neto D. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens. 2021 May 8;10(5):570. https://doi.org/10.3390/pathogens10050570
  70. 57. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA. Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochem. 2007 Feb 1;68(3):355‒60. https://doi.org/10.1016/j.phytochem.2006.10.012
  71. 58. Demain AL, Fang A. The natural functions of secondary metabolites. Hist Modern Biotechnology I. 2000;1‒39. https://doi.org/10.1007/3-540-44964-7_1
  72. 59. Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbio. 2002 Nov;148(11):3737‒41. https://doi.org/10.1099/00221287-148-11-3737
  73. 60. Calhoun LA, Findlay JA, Miller JD, Whitney NJ. Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycological Res. 1992 Apr 1;96(4):281‒86. https://doi.org/10.1016/S0953-7562(09)80939-8
  74. 61. Mahish PK, Singh S, Chauhan R. Bioactive secondary metabolites from endophytic Phoma spp. In: Phoma: Diversity, taxonomy, bioactivities and nanotechnology; 2021 Nov 20. pp. 205‒19. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-81218-8_11
  75. 62. Wang Y, Fan Q, Wang D, Zou WQ, Tang DX, Hongthong P, Yu H. Species diversity and virulence potential of the Beauveria bassiana complex and Beauveria scarabaeidicola complex. Front Microb. 2022 Mar 4;13:841604. https://doi.org/10.3389/fmicb.2022.841604
  76. 63. Cárdenas OG, Madrigal HC, Garzón A. Use and impact of endophytic entomopathogenic fungi: Their potential in the context of agricultural sustainability. Biotecnia. 2024 Sep 17;26:507‒06. https://doi.org/10.18633/biotecnia.v26.1986
  77. 64. Fite T, Kebede E, Tefera T, Bekeko Z. Endophytic fungi: versatile partners for pest biocontrol, growth promotion and climate change resilience in plants. Front Sustain Food Systems. 2023 Dec 21;7:1322861. https://doi.org/10.3389/fsufs.2023.1322861
  78. 65. Silva ID, Bessa LA, Reis MN, Augusto DS, Roweder C, Souchie EL, Vitorino LC. Endophytic fungi inoculation reduces ramulosis severity in Gossypium hirsutum plants. Microorganisms. 2024 May 31;12(6):1124. https://doi.org/10.3390/microorganisms12061124
  79. 66. Rajashekhar M, Rajashekar B, Sathyanarayana E, Keerthi MC, Kumar PV, Ramakrishna K, et al. Microbial pesticides for insect pest management: success and risk analysis. Int J Environ Clim Chang. 2021;11:18‒32. https://doi.org/10.9734/ijecc/2021/v11i430388
  80. 67. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebrate Pathology. 2015 Nov 1;132:1‒41. https://doi.org/10.1016/j.jip.2015.07.009
  81. 68. Litwin A, Nowak M, Różalska S. Entomopathogenic fungi: unconventional applications. Rev Environ Sci Biotechnol. 2020;19:23–42. https://doi.org/10.1007/s11157-020-09525-1
  82. 69. Lacey LA. Entomopathogens used as microbial control agents. In: Microbial control of insect and mite pests. Academic Press. 2017 Jan 1. pp. 3‒12. https://doi.org/10.1016/B978-0-12-803527-6.
  83. 00001-9
  84. 70. Sung JM, Lee JO, Humber RA, Sung GH, Shrestha B. Cordyceps bassiana and production of stromata in vitro showing Beauveria anamorph in Korea. Mycobio. 2006 Mar 1;34(1):1‒6.
  85. https://doi.org/10.4489/MYCO.2006.34.1.001
  86. 71. Branine M, Bazzicalupo A, Branco S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathogens. 2019 Jul 18;15(7):e1007831. https://doi.org/10.1371/journal.ppat.1007831
  87. 72. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005 Mar 1;97(1):84‒98. https://doi.org/10.3852/mycologia.97.1.84
  88. 73. Wang CF, Yang XQ, Sun J, Wang T, Cui HR, Yang YB, Ding ZT. New metabolites, antifeedant, insecticidal activities and reciprocal relationship between insect and fungus from endophyte Schizophyllum commune. Chemistry and Biodiversity. 2022 Jun;19(6):e202200130.
  89. https://doi.org/10.1002/cbdv.202200130
  90. 74. Bidochka MJ, Small CL. Phylogeography of Metarhizium, an insect pathogenic fungus. Insect-Fungal Assoc. 2005 Feb 3;28‒49. https://doi.org/10.1093/oso/9780195166521.003.0002
  91. 75. Mathulwe LL, Jacobs K, Malan AP, Birkhofer K, Addison MF, Addison P. Characterisation of Metarhizium majus (Hypocreales: Clavicipitaceae) isolated from the Western Cape Province, South Africa. Plos One. 2021 Feb 19;16(2):e0240955. https://doi.org/10.1371/journal.pone.0240955
  92. 76. Hu S, Bidochka MJ. Root colonization by endophytic insect‐pathogenic fungi. J Appl Microbio. 2021 Feb 1;130(2):570‒81. https://doi.org/10.1111/jam.14503
  93. 77. Moreno-Gavíra A, Huertas V, Diánez F, Sánchez-Montesinos B, Santos M. Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants. 2020 Dec 10;9(12):1746. https://doi.org/10.3390/plants9121746
  94. 78. Pitt JI, Hocking AD. Penicillium and Talaromyces. In: Fungi and food spoilage. Cham: Springer International Publishing; 2022 Sep 3. pp. 231‒349. https://doi.org/10.1007/978-3-030-85640-3_7
  95. 79. Iannone LJ, Cabral D, Schardl CL, Rossi MS. Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia. 2009 May 1;101(3):340‒51. https://doi.org/10.3852/08-156
  96. 80. Ji YL, Zhan LH, Kang Y, Sun XH, Yu HS, Wang ZW. A new stromata-producing Neotyphodium species symbiotic with clonal grass Calamagrostis epigeios (L.) Roth. grown in China. Mycologia. 2009 Mar 1;101(2):200‒05. https://doi.org/10.3852/08-044
  97. 81. Azevedo JL, Maccheroni Jr W, Pereira JO, De Araújo WL. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic J Biotech. 2000 Apr;3(1):15‒16. https://doi.org/10.2225/vol3-issue1-fulltext-4
  98. 82. Simons L, Bultman TL, Sullivan TJ. Effects of methyl jasmonate and an endophytic fungus on plant resistance to insect herbivores. J Chem Ecology. 2008 Dec;34:1511‒17. https://doi.org/10.1007/s10886-008-9551-y
  99. 83. Busby PE, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant disease. Plant Mol Biol. 2016 Apr;90:645‒55. https://doi.org/10.1007/s11103-015-0412-0
  100. 84. Lefort MC, McKinnon AC, Nelson TL, Glare T. Natural occurrence of the entomopathogenic fungi Beauveria bassiana as a vertically transmitted endophyte of Pinus radiata and its effect on above-and below-ground insect pests.
  101. 85. Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K. Role of secondary metabolites in plant defense against pathogens. Microb Pathogenesis. 2018 Nov 1;124:198‒202. https://doi.org/10.1016/j.micpath.2018.08.034
  102. 86. Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D. Beneficial effects of endophytic fungi colonization on plants. Appl Microb and Biotechno. 2019 Apr 2;103:3327‒40. https://doi.org/10.1007/s00253-
  103. 019-09713-2
  104. 87. Kumari R, Singh A, Yadav AN. Fungal enzymes: degradation and detoxification of organic and inorganic pollutants. Recent Trends in Mycological Res: Volume 2: Environ and Industrial Perspective. 2021. 99‒125. https://doi.org/10.1007/978-3-030-68260-6_5
  105. 88. Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci. 2015 Aug 6;6:573. https://doi.org/10.3389/fpls.2015.00573
  106. 89. Mantzoukas S, Eliopoulos PA. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl Sci. 2020 Jan 3;10(1):360. https://doi.org/10.3390/app10010360
  107. 90. Zehner LM, Krespach MK, Stroe MC, Rosin M, Schroeckh V, Brakhage AA. Activation of secondary metabolite production in fungi. In: Evolution of fungi and fungal-like organisms. Cham: Springer International Publishing; 2023 Aug 12. pp. 241‒73. https://doi.org/10.1007/978-3-031-29199-9_11
  108. 91. Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbio. 2013 Feb 15;4:24.
  109. https://doi.org/10.3389/fmicb.2013.00024
  110. 92. Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system. Developmental and Comparative Immuno. 2018 Jun 1;83:96‒103. https://doi.org/10.1016/j.dci.2018.01.010
  111. 93. Gautam UK. Effect of the entomopathogenic fungus Isaria fumosorosea on physiological processes in insects. Faculty of Science, University of South Bohemia; 2020
  112. 94. Lacava PT, Azevedo JL. Biological control of insect-pest and diseases by endophytes. In: Advances in endophytic research. New Delhi: Springer India; 2013 Oct 5. pp. 231‒56.
  113. https://doi.org/10.1007/978-81-322-1575-2_13
  114. 95. Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, Schenk PM. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbio. 2017 Dec 19;8:2552. https://doi.org/10.3389/fmicb.2017.02552
  115. 96. Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbio. 2015 Jul 28;6:780. https://doi.org/10.3389/fmicb.2015.00780
  116. 97. Logan NA, Vos PD. Bacillus. U: Whitman WB (ured.) Bergey's manual of systematics of archaea and bacteria, 1. izd.
  117. 98. Rocha GT, Montalvão SC, Queiroz PR, Berçot MR, Gomes AC, Monnerat RG. Morphological and biochemical characterization of bacterial species of Bacillus, Lysinibacillus and Brevibacillus. Revista
  118. Ceres. 2023 Jun 16;70:91‒104. https://doi.org/10.1590/0034-737x202370030010
  119. 99. Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, et al. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Comprehensive Rev Food Sci and Food Safety. 2020 Jul;19(4):1605‒57. https://doi.org/10.1111/1541-4337.12571
  120. 100. Ramarao N, Lereclus D, Sorokin A. The Bacillus cereus group. In: Molecular medical microbiology. Academic Press; 2015 Jan 1. pp. 1041‒78. https://doi.org/10.1016/B978-0-12-397
  121. 169-2.00059-7
  122. 101. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Inter J Systematic and Evolutionary Microbio. 1976 Apr;26(2):226‒29. https://doi.org/
  123. 10.1099/00207713-26-2-226
  124. 102. Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Inter J Systematic and Evolutionary Microbio. 2018 Sep;68(9):2727‒48. https://doi.org/
  125. 10.1099/ijsem.0.002856
  126. 103. De la Maza LM, Pezzlo MT, Bittencourt CE, Peterson EM. Color atlas of medical bacteriology. John Wiley and Sons; 2020 Jun 1. https://doi.org/10.1128/9781683671077
  127. 104. Jacob J, Krishnan GV, Thankappan D, Amma DK. Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. In: Microbial endophytes. Woodhead Publishing; 2020 Jan 1. pp. 75‒105. https://doi.org/10.1016/B978-0-12-819654-0.00004-1
  128. 105. Chang Y, Xia X, Sui L, Kang Q, Lu Y, Li L, et al. Endophytic colonization of entomopathogenic fungi increases plant disease resistance by changing the endophytic bacterial community. J Basic Microbio. 2021 Dec;61(12):1098‒112. https://doi.org/10.1002/jobm.202100494
  129. 106. Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms. 2017 Nov 25;5(4):77. https://doi.org/10.3390/microorganisms5040077
  130. 107. Meneses C, Gonçalves T, Alquéres S, Rouws L, Serrato R, Vidal M, Baldani JI. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant and Soil. 2017 Jul;416:133‒47. https://doi.org/10.1007/s11104-017-
  131. 3201-5
  132. 108. Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria. Microbial Biofilms. 2015 Oct 7;163‒99. https://doi.org/10.1128/978155
  133. 5817466.ch9
  134. 109. Brimecombe MJ, De Leij FA, Lynch JM. The effect of root exudates on rhizosphere microbial populations. In: The rhizosphere. CRC Press; 2000 Nov 17. pp. 111‒56. https://doi.org/10.1201/
  135. 9780849384974-10
  136. 110. Chalivendra S. Microbial toxins in insect and nematode pest biocontrol. Inter J Mol Sci. 2021;22(14):p.7657. https://doi.org/10.3390/ijms22147657
  137. 111. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotech J. 2011 Apr;9(3):283‒300.
  138. https://doi.org/10.1111/j.1467-7652.2011.00595.x
  139. 112. Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human-generated ecological niches. Insects. 2013 Dec 24;5(1):62‒91. https://doi.org/10.3390/insects5010062
  140. 113. Glare TR, Jurat-Fuentes JL, O’callaghan M. Basic and applied research: entomopathogenic bacteria. In: Microbial control of insect and mite pests. Academic press; 2017 Jan 1. pp. 47‒67. https://doi.org/10.1016/B978-0-12-803527-6.00004-4
  141. 114. Disi J, Simmons J, Zebelo S. Plant growth-promoting rhizobacteria-induced defense against insect herbivores. Field Crops: Sustainable Management by PGPR. 2019;385‒410.
  142. https://doi.org/10.1007/978-3-030-30926-8_14
  143. 115. Mueller UG, Dash D, Rabeling C, Rodrigues A. Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution. 2008 Nov 1;62(11):2894‒912. https://doi.org/
  144. 10.1111/j.1558-5646.2008.00501.x
  145. 116. Gomes ED, Dias LR, Cassia RM. Actinomycetes bioactive compounds: Biological control of fungi and phytopathogenic insect. African J Biotech. 2018 Apr 25;17(17):552‒59. https://doi.org/10.5897/AJB2017.16323
  146. 117. Aamir M, Rai KK, Zehra A, Dubey MK, Samal S, Yadav M, Upadhyay RS. Endophytic actinomycetes in bioactive compounds production and plant defense system. In: Microbial Endophytes. Woodhead Publishing; 2020 Jan 1. pp. 189‒229. https://doi.org/10.1016/B978-0-12-818734-0.00009-7
  147. 118. Kekuda TP, Shobha KS, Onkarappa R. Fascinating diversity and potent biological activities of Actinomycete metabolites. J Pharma Res. 2010 Feb;3(2):250‒56.
  148. 119. Afkhami ME, Rudgers JA. Endophyte-mediated resistance to herbivores depends on herbivore identity in the wild grass Festuca subverticillata. Environ Entomo. 2009 Aug 1;38(4):1086‒95.
  149. https://doi.org/10.1603/022.038.0416
  150. 120. Saikkonen K, Helander M, Ranta H, Neuvonen S, Virtanen T, Suomela J, Vuorinen P. Endophyte-mediated interactions between woody plants and insect herbivores?. In: Proceedings of the 9th International Symposium on Insect-Plant Relationships. Springer Netherlands; 1996. pp. 269‒71. https://doi.org/10.1007/978-94-009-1720-0_60
  151. 121. Mengistu AA. Endophytes: colonization, behaviour and their role in defense mechanism. Inter J Microbio. 2020;2020(1):6927219. https://doi.org/10.1155/2020/6927219
  152. 122. Bamisile BS, Dash CK, Akutse KS, Keppanan R, Afolabi OG, Hussain M, et al. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbio Res. 2018 Dec 1;217:34‒50. https://doi.org/10.1016/j.micres.2018.08.016
  153. 123. Samreen T, Naveed M, Nazir MZ, Asghar HN, Khan MI, Zahir ZA, et al. Seed associated bacterial and fungal endophytes: Diversity, life cycle, transmission and application potential. Appl Soil Ecolo. 2021 Dec 1;168:104191. https://doi.org/10.1016/j.apsoil.2021.104191
  154. 124. Peterson H. Water stress causes context dependent effects in endophytic relationship between Metarhizium robertsii and maize. M. Sc Thesis. The Pennsylvania State University; 1-105.
  155. 125. Rudgers JA, Clay K. Fungal endophytes in terrestrial communities and ecosystems. Mycology Series. 2005 May 24;23:423. https://doi.org/10.1201/9781420027891.ch21
  156. 126. Verma NS, Kuldeep DK, Chouhan M, Prajapati R, Singh SK. A review on eco-friendly pesticides and their rising importance in sustainable plant protection practices. Inter J Plant and Soil Sci. 2023 Nov 18;35(22):200‒14. https://doi.org/10.9734/ijpss/2023/v35i224126
  157. 127. Tejesvi MV, Pirttilä AM. Endophytic fungi, occurrence and metabolites. Physiol and Genetics: Selected Basic and Appl Aspects. 2018;213‒30. https://doi.org/10.1007/978-3-319-71740-1_7
  158. 128. Clay K. Defensive symbiosis: a microbial perspective. Funct Ecol. 2014 Apr 1;28(2):293‒98. https://doi.org/10.1111/1365-2435.12258
  159. 129. Ma Y, Rajkumar M, Luo Y, Freitas H. Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazardous Materials. 2011 Nov 15;195:230‒37. https://doi.org/10.1016/j.jhazmat.2011.08.034
  160. 130. Panwar N, Szczepaniec A. Endophytic entomopathogenic fungi as biological control agents of insect pests. Pest Manag Sci. 2024. https://doi.org/10.1002/ps.8322

Downloads

Download data is not yet available.