Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Anatomical adaptations of Launaea sarmentosa (Willd.) Kuntze (Asteraceae) from the Andaman coast, Thailand

DOI
https://doi.org/10.14719/pst.5558
Submitted
5 October 2024
Published
13-07-2025 — Updated on 21-07-2025
Versions

Abstract

Launaea sarmentosa (Willd.) Kuntze, a threatened coastal species endemic to the Andaman coastline of Thailand, is undergoing significant population decline due to habitat degradation. Despite its ecological and economic importance, limited knowledge exists regarding its anatomical adaptations to coastal environments, knowledge that is essential for effective conservation and restoration strategies. This study aimed to comprehensively investigate the vegetative anatomy of L. sarmentosa and to identify taxonomically significant features that reflect its adaptation to environmental stressors. Samples of leaves, stems, stolons and roots were collected from Mai Khao Beach, Phuket and examined using paraffin embedding and light microscopy techniques. The results revealed several adaptive features, including amphistomatic leaves, thick cuticlar layers, homobaric leaf structure and the formation of periderm in stems and roots. Stomatal density was significantly higher on the adaxial surface compared to the adaxial surface, indicating differential regulation of gas exchange. The presence of a thick cuticle and epidermis further highlights its adaptations to the harsh coastal environment, characterized by high light intensity and drought conditions. Stolons exhibited chlorenchyma and stomata, suggesting their role in photosynthesis and water regulation. These anatomical traits reflect the ability of L. sarmentosa to thrive in dune habitats and provide essential information for future conservation and habitat restoration initiatives. Understanding these adaptations is crucial for the effective preservation and rehabilitation of this species.

References

  1. 1. Koyama H, Bunwong S, Pornpongrungrueng P, Hind DJN. Compositae (Asteraceae). In: Santisuk T, Balslev, editors. Flora of Thailand. Vol. 13. Part 2. Bangkok: Royal Forest Department; 2016. p. 143–428.
  2. 2. Salih Y, Harisha CR, Shukla VJ, Acharya R. Pharmacognostical evaluation of Launaea sarmentosa (Willd.) Kuntze root. AYU. 2013;34(1):90–94. https://doi.org/10.4103/0974-8520.115439
  3. 3. Them LT, Dung PTN, Trinh PTN, Hung QT, Vi LNT, Tuan NT, et al. Saponin, polyphenol, flavonoid content and α-glucosidase inhibitory activity, antioxidant potential of Launaea sarmentosa leaves grown in Ben Tre province, Vietnam. IOP Conf Ser Mater Sci Eng. 2019;542:012036. https://doi.org/10.1088/1757-899X/542/1/012036
  4. 4. Raju GS, Rahman Moghal MM, Hossain MS, Hassan MM, Billah MM, Ahamed SK, et al. Assessment of pharmacological activities of two medicinal plants of Bangladesh: Launaea sarmentosa and Aegialitis rotundifolia Roxb in the management of pain, pyrexia, and inflammation. Biol Res. 2014;47:55. https://doi.org/10.1186/0717-
  5. 6287-47-55
  6. 5. Nguyen TQC, Binh TD, Kusunoki R, Pham TLA, Nguyen YDH, Nguyen TT, et al. Effects of Launaea sarmentosa extract on lipopolysaccharide-induced inflammation via suppression of NF-κB/MAPK signalling and Nrf2 activation. Nutrients. 2020;12:2586. https://doi.org/10.3390/nu12092586
  7. 6. Meksuwan Y, Sutthinon P. In vitro propagation and histochemical analysis of Launaea sarmentosa (Willd.) Kuntze. TIS. 2023;20(5):5729. https://doi.org/10.48048/tis.2023.5729
  8. 7. Anbarashan M, Balachandran N, Mathevet R, Barathan N, Uma Maheswari P. An evaluation of coastal sand dune flora of Cuddalore District, Tamil Nadu, India: perspectives for conservation and management. Geol Ecol Landsc. 2022;8(2):208–21. https://doi.org/10.1080/24749508.2022.2130555
  9. 8. Evert RF. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd ed. New Jersey: John Wiley & Sons; 2006. https://doi.org/10.1002/0470047380
  10. 9. Kenzo T, Ichie T, Watanabe Y, Hiromi T. Ecological distribution of homobaric and heterobaric leaves in tree species of Malaysian lowland tropical rainforest. Am J Bot. 2007;94(5):764–75. https://doi.org/10.3732/ajb.94.5.764
  11. 10. Tipmontiane K, Srinual A, Kesonbua W. Systematic significance of leaf anatomical characteristics in some species of Mangifera L. (Anacardiaceae) in Thailand. Trop Nat Hist. 2018;18(2):68–83. https://li01.tci-thaijo.org/index.php/tnh/article/view/148158
  12. 11. Elkharbotly AA. Studies on some anatomical features of selected plant species grown in sand dune areas of North Sinai, Egypt. Acta Ecol Sin. 2016;36:246–51. https://doi.org/10.1016/j.chnaes.2016.03.004
  13. 12. Aschenbrenner AK, Horakh S, Spring O. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity, and occurrence. AoB PLANTS. 2013;5:plt028. https://doi.org/10.1093/aobpla/plt028
  14. 13. Liesenfeld V, Gentz P, De Freitas EM, Martins S. Leaf morphology and anatomy of Asteraceae of the Pampas biome (sand-fields). Flora. 2019;258:151418. https://doi.org/10.1016/j.flora.2019.151418
  15. 14. Johansen DA. Plant Microtechnique. London: McGraw-Hill; 1940
  16. 15. Ruzin SE. Plant Microtechnique and Microscopy. New York: Oxford University Press; 1999
  17. 16. Mitra S, Maiti GG, Maity D. Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br. (Malvaceae, formerly Sterculiaceae). Phytotaxa. 2015;219(3):267–76
  18. 17. Ibiye, A, Green, BO, Ajuru, MG. Comparative foliar epidermal study of some species of pteridophytes in Rivers State University, Nigeria. Cell Biol Dev. 2023;7(2):51–55. https://smujo.id/cbd/article/view/14924
  19. 18. Folorunso AE, Awosode OD. Comparative anatomy of invasive and non-invasive species in the family Asteraceae in Nigeria. Int J Biol Chem Sci. 2013;7(5):1804–09. https://doi.org/10.4314/ijbcs.v7i5.2
  20. 19. Souza DMFD, Sá RD, Araújo EL, Randau KP. Anatomical, phytochemical, and histochemical study of Solidago chilensis Meyen. An Acad Bras Cienc. 2018;90(2 Suppl. 1):2107–20. https://doi.org/10.1590/0001-3765201720160280
  21. 20. Adedeji O, Jewoola OA. Importance of leaf epidermal characters in the Asteraceae family. Not Bot Hort Agrobot Cluj. 2008;36(2):7–16. https://doi.org/10.15835/nbha362243
  22. 21. Tahir MA, Saewar R, Safeer S, Hamza I, Khan MF. Anatomical variations in stomatal attributes of selected species of the family Asteraceae. Commun Plant Sci. 2016;7(12):10–14. https://doi.org/10.26814/cps2017002
  23. 22. Rudall PJ, Chen ED, Cullen E. Evolution and development of monocot stomata. Am J Bot. 2017;104(8):1122–41. https://doi.org/10.3732/ajb.1700086
  24. 23. Mandel JR, Barker MS, Bayer RJ, Dikow RB, Gao TG, Jones KE, et al. The Compositae tree of life in the age of phylogenomics. J Syst Evol. 2017;55(4):405–10. https://doi.org/10.1111/jse.12265
  25. 24. Mott KA, Cardon ZG, Berry JA. Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ. 1993;16(1):25–34. https://doi.org/10.1111/j.1365-3040.1993.tb00841.x
  26. 25. Boeger MRT, Poulson ME. Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat Bot. 2003;75(2):123–35. https://doi.org/10.1016/S0304-3770(02)00174-2
  27. 26. Mott KA, Michaelson O. Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae). Am J Bot. 1991;78(1):76–79. https://doi.org/10.2307/2445230
  28. 27. Pramali K, Bongcheewin B, Traiperm P. Leaf micromorphological adaptation of Pogostemon spp. (section Euteralis) in Thailand. Agric Nat Resour. 2018;52(3):250–58. https://doi.org/10.1016/j.anres.2018.09.002
  29. 28. Fahn A, Cutler D. Xerophytes. Berlin: Gebruder Borntraeger; 1992.
  30. 29. Camargo MAB, Marenco RA. Density, size, and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amaz. 2011;41(2):205–12. https://doi.org/10.1590/S0044-59672011000200004
  31. 30. Richardson F, Brodribb IJ, Jordan GJ. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiol. 2017;37(7):869–78. https://doi.org/10.1093/treephys/tpx073
  32. 31. Wall S, Vialet-Chabrand S, Davey P, Van Rie J, Galle A, Cockram J, et al. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. New Phytol. 2022;235(5):1743–56. https://doi.org/10.1111/nph.18257
  33. 32. Morris MW, Stern WL, Judd WS. Vegetative anatomy and systematics of subtribe Dendrobiinae (Orchidaceae). Bot J Linn Soc. 1996;120(2):89–144. https://doi.org/10.1111/j.1095-8339.1996.tb00483.x
  34. 33. Mendes KR, Machado SR, Amaro ACE, Silva SCM, Ferreira Júnior V, Rodrigues TM. Distribution of homobaric and heterobaric leafed species in the Brazilian Cerrado and seasonal semideciduous forests. Flora. 2016;225:52–59. https://doi.org/10.1016/j.flora.2016.10.005
  35. 34. Campilho A, Nieminen K, Ragni L. The development of the periderm: the final frontier between a plant and its environment. Curr Opin Plant Biol. 2020;53:10–14. https://doi.org/10.1016/j.pbi.2019.08.008
  36. 35. Starr AM. Comparative anatomy of dune plants. Bot Gaz. 1912;54(4):265–305. https://doi.org/10.1086/330917
  37. 36. Blanke MM, Cooke DT. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential, and water channel activity in strawberry stolons and leaves. Plant Growth Regul. 2004;42:153–60. https://doi.org/10.1023/B:GROW.0000017489.21970.d4
  38. 37. Lee JT, Yen LZ, Chu MY, Lin YS, Chang CC, Lin RS, et al. Growth characteristics and anti-wind erosion ability of three tropical foredune pioneer species for sand dune stabilization. Sustainability. 2020;12(8):3353. https://doi.org/
  39. 10.3390/su12083353

Downloads

Download data is not yet available.