Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Sustainable encapsulation of bio-active agents and microorganisms in electrospun nanofibers: A comprehensive review

DOI
https://doi.org/10.14719/pst.5590
Submitted
7 October 2024
Published
25-12-2024 — Updated on 24-05-2025
Versions

Abstract

Nanotechnology is a technological discipline focused on the design, fabrication and utilization of structures, systems and devices through the manipulation of atoms and molecules at the nanoscale. A significant advancement in this field is the development of a nanocarrier system for microbe encapsulation using electrospun nanofibers. These nanofibers, characterized by their diameters in the nanometric range, are produced through nanotechnology. The electrospinning technique is a versatile method that fabricates these nanofibers from polymer solutions, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyethylene oxide (PEO), polyethylene glycol (PEG) and chitosan, using high voltage. Nanofibers play a crucial role in various fields, including environmental remediation, medicine, agriculture and textiles. Beneficial microorganisms are microbial cells that aid crops by protecting them from pathogens, supplying essential nutrients and alleviating both biotic and abiotic stresses. Several techniques have been developed to encapsulate microorganisms within nanofibers, with electrospinning being the most widely applied method. This technique effectively traps microbial cells while preserving their viability for extended periods
without causing harm. Microorganisms such as bacteria, fungi and viruses, as well as fertilizers, pesticides and growth hormones, can be successfully encapsulated within nanofibers. This review provides a comprehensive overview of nanofibers, including their characterization, the polymers utilized [such as chitosan, PVA, PEO, PEG and alginate] and the electrospinning process with its variations. It also discusses techniques for encapsulating microbial cells within nanofibers and their current applications in agriculture.

References

  1. 1. Krishnamoorthy V, Rajiv S. Potential seed coatings fabricated from electrospinning hexaaminocyclotriphosphazene and cobalt nanoparticles incorporated polyvinylpyrrolidone for sustainable
  2. agriculture. ACS Sustainable Chem Eng. 2017;5(1):146-52. https://doi.org/10.1021/acssuschemeng.6b01088
  3. 2. Lesueur D, Deaker R, Herrmann L, Bräu L, Jansa J. The production and potential of biofertilizers to improve crop yields. In: Arora N, Mehnaz S, Balestrini R, editors. Bioformulations: For sustainable agriculture. New Delhi: Springer; 2016. p. 71–92. https://doi.org/10.1007/978-81-322-2779-3_4
  4. 3. Chaudhary T, Dixit M, Gera R, Shukla AK, Prakash A, Gupta G, et al. Techniques for improving formulations of bioinoculants. 3 Biotech. 2020;10:199. https://doi.org/10.1007/s13205-020-02182-9
  5. 4. Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol. 2015;99:4983-96. https://doi.org/10.1007/s00253-015-6656-4
  6. 5. Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:1357. https://doi.org/10.3389/fpls.2019.01357
  7. 6. Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Appl Microbiol Biotechnol. 2017;101:3991-4008. https://doi.org/10.1007/s00253-017-8264-y
  8. 7. John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D. Bioencapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol. 2011;31(3):211-26. https://doi.org/10.3109/07388551.2010.513327
  9. 8. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability- A review. Molecules. 2016;21(5):573. https://doi.org/10.3390/molecules21050573
  10. 9. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil. 2014;378:1-33. https://doi.org/10.1007/s11104-013-1956-x
  11. 10. Badgar K, Prokisch J, El-Ramady H. Nanofibers for sustainable agriculture: A short communication. Egypt J Soil Sci. 2021;61(3):373-80. https://doi.org/10.21608/ejss.2021.105877.1477
  12. 11. Damasceno R, Roggia I, Pereira C, de Sá E. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Can J Microbiol. 2013;59(11):716-19. https://doi.org/10.1139/cjm-2013-0508
  13. 12. Chanratana M, Han GH, Melvin Joe M, Roy Choudhury A, Sundaram S, Halim MA, et al. Evaluation of chitosan and alginate immobilized Methylobacterium oryzae CBMB20 on tomato plant growth. Arch Agron Soil Sci. 2018;64(11):1489-502. https://doi.org/10.1080/03650340.2018.1440390
  14. 13. Vassilev N, Vassileva M, Martos V, Garcia del Moral LF, Kowalska J, Tylkowski B, et al. Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Front Plant Sci. 2020;11:270. https://doi.org/10.3389/fpls.2020.00270
  15. 14. Qu B, Luo Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors–A review. Int J Biol Macromol. 2020;152:437-48. https://doi.org/10.1016/j.ijbiomac.2020.02.240
  16. 15. Belščak-Cvitanović A, Komes D, Karlović S, Djaković S, Špoljarić I, Mršić G, et al. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015;167:378-86. https://doi.org/10.1016/j.foodchem.2014.07.011
  17. 16. Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, et al. Advanced technologies for the extraction of marine brown algal polysaccharides. Marine Drugs. 2020;18(3):168. https://doi.org/10.3390/md18030168
  18. 17. Simó G, Fernández-Fernández E, Vila-Crespo J, Ruipérez V, Rodríguez-Nogales JM. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym. 2017;170:1-4. https://doi.org/10.1016/j.carbpol.2017.04.013
  19. 18. Bhattarai DP, Aguilar LE, Park CH, Kim CS. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes. 2018;8(3):62. https://doi.org/10.3390/membranes8030062
  20. 19. Mojaveri SJ, Hosseini SF, Gharsallaoui A. Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly (vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym. 2020;241:116278. https://doi.org/10.1016/j.carbpol.2020.116278
  21. 20. Greiner A, Wendorff JH, Yarin AL, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol. 2006;71:387-93. https://doi.org/10.1007/s00253-006-0356-z
  22. 21. Agrahari V, Agrahari V, Meng J, Mitra AK. Electrospun nanofibers in drug delivery: Fabrication, advances and biomedical applications. In: Mitra AK, Cholkar K, Mondal A, editors. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier; 2017. p. 189-215. https://doi.org/10.1016/B978-0-323-42978-8.00009-7
  23. 22. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21. https://doi.org/10.1016/j.jconrel.2014.04.018
  24. 23. Fatih Canbolat M, Tang C, Bernacki SH, Pourdeyhimi B, Khan S. Mammalian cell viability in electrospun composite nanofiber structures. Macromolecular Bioscience. 2011;11(10):1346-56. https://doi.org/10.1002/mabi.201100108
  25. 24. Lee S, Jin G, Jang JH. Electrospun nanofibers as versatile interfaces for efficient gene delivery. J Biol Eng. 2014;8:30. https://doi.org/10.1186/1754-1611-8-30
  26. 25. Spasova M, Manolova N, Naydenov M, Kuzmanova J, Rashkov I. Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact Compat Polym. 2011;26(1):48-55. https://doi.org/10.1177/0883911510391446
  27. 26. Letnik I, Avrahami R, Rokem JS, Greiner A, Zussman E, Greenblatt C. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules. 2015;16(10):3322-28. https://doi.org/10.1021/acs.biomac.5b00970
  28. 27. Zussman E. Encapsulation of cells within electrospun fibers. Polym Adv Technol. 2011;22(3):366-71. https://doi.org/10.1002/pat.1812
  29. 28. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol Mater Eng. 2013;298(5):504-20. https://doi.org/10.1002/mame.201200290
  30. 29. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S. Natural fibers as sustainable
  31. and renewable resource for development of eco-friendly composites: A comprehensive review. Front Mater. 2019;6:226. https://doi.org/10.3389/fmats.2019.00226
  32. 30. Krishnamoorthy V, Elumalai G, Rajiv S. Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J Chem. 2016;40:3268-76. https://doi.org/10.1039/C5NJ03008K
  33. 31. Farias BV, Pirzada T, Mathew R, Sit TL, Opperman C, Khan SA. Electrospun polymer nanofibers as seed coatings for crop protection. ACS Sustainable Chem Eng. 2019;7(24):19848-56. https://doi.org/10.1021/acssuschemeng.9b05200
  34. 32. Espinoza Márquez E, Soto Zarazúa GM, Pérez Bueno JD. Prospects for the use of electrooxidation and electrocoagulation techniques for membrane filtration of irrigation water. Environ Process. 2020;7:391-420. https://doi.org/10.1007/s40710-020-00439-2
  35. 33. Ma J, Yu Z, Liu S, Chen Y, Lv Y, Liu Y, et al. Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework. J Hazard Mater. 2022;424(B):127455. https://doi.org/10.1016/j.jhazmat.2021.127455
  36. 34. Lim CT. Nanofiber technology: Current status and emerging developments. Prog Polym Sci. 2017;70:1-7. https://
  37. doi.org/10.1016/j.progpolymsci.2017.03.002
  38. 35. Vinceković M, Jurić S, Đermić E, Topolovec-Pintarić S. Kinetics and mechanisms of chemical and biological agents release from biopolymeric microcapsules. J Agric Food Chem. 2017;65(44):9608-17. https://doi.org/10.1021/acs.jafc.7b04075
  39. 36. Vemmer M, Patel AV. Review of encapsulation methods suitable for microbial biological control agents. Biol Control. 2013;67(3):380-89. https://doi.org/10.1016/j.biocontrol.2013.09.003
  40. 37. Vejan P, Khadiran T, Abdullah R, Ismail S, Dadrasnia A. Encapsulation of plant growth promoting Rhizobacteria-prospects and potential in agricultural sector: A review. J Plant Nutr. 2019;42(19):2600-23. https://doi.org/10.1080/01904167.2019.1659330
  41. 38. Schoebitz M, López Belchí MD. Encapsulation techniques for plant growth-promoting rhizobacteria. In: Arora N, Mehnaz S, Balestrini R, editors. Bioformulations: For Sustainable Agriculture. New Delhi: Springer; 2016. p. 251-265. https://doi.org/10.1007/978-81-322-2779-3_14
  42. 39. Saberi Riseh R, Skorik YA, Thakur VK, Moradi Pour M, Tamanadar E, Noghabi SS. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int J Mol Sci. 2021;22(20):11165. https://doi.org/10.3390/ijms222011165
  43. 40. Barrera MC, Jakobs-Schoenwandt D, Gómez MI, Serrato J, Ruppel S, Patel AV. Formulating bacterial endophyte: Pre-conditioning of cells and the encapsulation in amidated pectin beads. Biotechnol Rep. 2020;26:e00463. https://doi.org/10.1016/j.btre.2020.e00463
  44. 41. de Melo BAG, Motta FL, Santana MHA. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C. 2016;62:967-74. https://doi.org/10.1016/j.msec.2015.12.001
  45. 42. Bhise KK, Dandge PB. Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch Agron Soil Sci. 2019;65(14):1955-68. https://doi.org/10.1080/03650340.2019.1584395
  46. 43. Guo L, Wu Z, Rasool A, Li C. Effects of free and encapsulated coculture bacteria on cotton growth and soil bacterial communities. Eur J Soil Biol. 2012;53:16-22. https://doi.org/10.1016/j.ejsobi.2012.08.003
  47. 44. Zago SL, dos Santos MF, Konrad D, Fiorini A, Rosado FR, Missio RF, et al. Shelf life of Azospirillum brasilense in alginate beads enriched with trehalose and humic acid. J Agric Sci. 2019;11(6):269-80. https://doi.org/10.5539/jas.v11n6p269
  48. 45. Chi Y, Wang D, Jiang M, Chu S, Wang B, Zhi Y, et al. Microencapsulation of Bacillus megaterium NCT-2 and its effect on remediation of secondary salinization soil. J Microencapsul. 2020;37(2):134-43. https://doi.org/10.1080/02652048.2019.1705409
  49. 46. Liffourrena AS, Lucchesi GI. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation,
  50. characterization and potential use as plant inoculants. J Biotechnol. 2018;278:28-33. https://doi.org/10.1016/j.jbiotec.2018.04.019
  51. 47. Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A. Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int J Biol Macromol. 2019;133:603-13. https://doi.org/10.1016/j.ijbiomac.2019.04.071
  52. 48. John RP, Tyagi RD, Brar SK, Prévost D, Surampalli RY. Effect of emulsion formulation of Sinorhizobium meliloti and preinoculated seeds on alfalfa nodulation and growth: A pouch study. J Plant Nutr. 2013;36(2):231-42. https://
  53. doi.org/10.1080/01904167.2012.739243
  54. 49. De Gregorio PR, Michavila G, Ricciardi Muller L, de Souza Borges C, Pomares MF, Saccol de Sá EL, et al. Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants. Plos One. 2017;12(5):e0176930. https://doi.org/10.1371/journal.pone.0176930
  55. 50. Mukiri C, Raja K, Senthilkumar M, Subramanian KS, Govindaraju K, Pradeep D, et al. Immobilization of beneficial microbe Methylobacterium aminovorans in electrospun nanofibre as potential seed coatings for improving germination and growth of groundnut Arachis hypogaea. Plant Growth Regul. 2022;97:419-27. https://doi.org/10.1007/s10725-021-00737-1
  56. 51. Duraimurugan P, Chandrika KS, Bharathi E, Roy DN. Encapsulation of Bacillus thuringiensis using sodium alginate and chitosan coacervates for insect-pest management. Carbohydr Polym Technol Appl. 2024;8:100540. https://doi.org/10.1016/j.carpta.2024.100540
  57. 52. Chaudhary SA, Patel DM, Patel JK, Patel DH. Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles. In: Patel JK, Pathak YV, editors. Emerging Technologies for Nanoparticle Manufacturing. Cham: Springer; 2021. p. 287-300. https://doi.org/10.1007/978-3-030-50703-9_12
  58. 53. Zuidam NJ, Shimoni E. Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam N, Nedovic V, editors. Encapsulation Technologies for Active Food Ingredients and Food Processing. New York, NY: Springer; 2010. p. 3-29. https://doi.org/10.1007/978-1-4419-1008-0_2
  59. 54. Zhang R, Hoffmann T, Tsotsas E. Novel technique for coating of fine particles using fluidized bed and aerosol atomizer. Processes. 2020;8(12):1525. https://doi.org/10.3390/pr8121525
  60. 55. Tarrés Q, Oliver-Ortega H, Boufi S, Pèlach MÀ, Delgado-Aguilar M, Mutjé P. Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. Int J Biol Macromol. 2020;145:1199-207. https://doi.org/10.1016/j.ijbiomac.2019.10.046
  61. 56. Li Y, Yu J, Ding B. Facile and ultrasensitive sensors based on electrospinning-netting nanofibers/nets. In: Macagnano A, Zampetti E, Kny E, editors. Electrospinning for High Performance Sensors. NanoScience and Technology. Cham: Springer; 2015. p. 1-34. https://doi.org/10.1007/978-3-319-14406-1_1
  62. 57. Kumuthan MS, Lakshmanan A, Sabarinathan KG, Subramanian KS, Raja K, Balachandar D, et al. Immobilization and characterization of Bacillus subtilis in PVA-chitosan composite Nanofiber. Pharma Innovation. 2021;10(12):1541-45. https://doi.org/10.22271/tpi.2021.v10.i12v.9616
  63. 58. Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol. 2017;70:56-68. https://doi.org/10.1016/j.tifs.2017.10.009
  64. 59. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials and applications. Chem Rev. 2019;119(8):5298-415. https://doi.org/10.1021/acs.chemrev.8b00593
  65. 60. Noruzi M. Electrospun nanofibres in agriculture and the food industry: A review. J Sci Food Agric. 2016;96(14):4663-78. https://doi.org/10.1002/jsfa.7737
  66. 61. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603-21. https://doi.org/10.1016/j.polymer.2008.09.014
  67. 62. Shahriar SS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery.
  68. Nanomaterials. 2019;9(4):532. https://doi.org/10.3390/nano9040532
  69. 63. Tipduangta P, Belton P, Fabian L, Wang LY, Tang H, Eddleston M, et al. Electrospun polymer blend nanofibers for tunable drug delivery: The role of transformative phase separation on controlling the release rate. Mol Pharmaceutics. 2016;13(1):25-39. https://doi.org/10.1021/acs.molpharmaceut.5b00359
  70. 64. Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, et al. Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. Wiley Interdiscip Rev: Nanomed Nanobiotechnology. 2016;8(5):654-77. https://doi.org/10.1002/wnan.1391
  71. 65. Lian H, Meng Z. Melt electrospinning vs. solution electrospinning: A comparative study of drug-loaded poly (ε-caprolactone) fibres. Mater Sci Eng C. 2017;74:117-23. https://doi.org/10.1016/j.msec.2017.02.024
  72. 66. Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, et al. Preparation of poly (ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci. 2008;107(2):909-17. https://doi.org/10.1002/app.26445
  73. 67. Zhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci Technol. 2018;80:175-86. https://doi.org/10.1016/j.tifs.2018.08.005
  74. 68. Kim YC, Kim YH, Kim JW, Ha KY. Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: Comparative study between intralesional injection and scaffold-based transplantation. J Korean Med Sci. 2016;31(9):1373. https://doi.org/10.3346/jkms.2016.31.9.1373
  75. 69. Gordegir M, Oz S, Yezer I, Buhur M, Unal B, Demirkol DO. Cells-onnanofibers: Effect of polyethyleneimine on hydrophobicity of poly -ɛ-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme Microb Technol. 2019;126:24-31. https://doi.org/10.1016/j.enzmictec.2019.03.002
  76. 70. de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JA, et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol. 2010;101(8):2872-76. https://doi.org/10.1016/j.biortech.2009.11.059
  77. 71. Kuntzler SG, de Almeida ACA, Costa JAV, de Morais MG. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. Int J Biol Macromol. 2018;113:1008-14. https://doi.org/10.1016/j.ijbiomac.2018.03.002
  78. 72. Moustafa M, Taha T, Elnouby M, El-Deeb N, Hamad G, Abusaied MA, et al. Potential detoxification of aflatoxin B2 using Kluyveromyces lactis and Saccharomyces cerevisiae integrated nanofibers. Biocell. 2017;41(2&3):67. https://doi.org/10.32604/biocell.2017.41.067
  79. 73. Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, et al. Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm. 2018;552(1-2):437-42. https://doi.org/10.1016/j.ijpharm.2018.10.020
  80. 74. Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 2006;17(18):4675. https://doi.org/10.1088/0957-4484/17/18/025
  81. 75. Fung WY, Yuen KH, Liong MT. Agrowaste-based nanofibers as a probiotic encapsulant: Fabrication and characterization. J Agric Food Chem. 2011;59(15):8140-47. https://doi.org/10.1021/jf2009342
  82. 76. Rasulov BA, Paerhati P, Yarbekov A, Pattaeva MA, Sherimbetov AG, Yili A. Biofabrication of Cu/Cu2O-nanoparticles and exopolysaccharide of Azotobacter chroococcum XH2018 based nanobiofungicide and its characterization. BioNanoScience. 2024;4:1-10. https://doi.org/10.1007/s12668-024-01528-4
  83. 77. Hussain Z, Khan MA, Iqbal F, Raffi M, Hafeez FY. Electrospun microbial-encapsulated composite-based plasticized seed coat for rhizosphere stabilization and sustainable production of canola (Brassica napus L.). J Agric Food Chem. 2019;67(18):5085-95. https://doi.org/10.1021/acs.jafc.8b06505
  84. 78. Perez JJ, Francois NJ, Maroniche GA, Borrajo MP, Pereyra MA, Creus CM. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym. 2018;202:409-17. https://doi.org/10.1016/j.carbpol.2018.07.084
  85. 79. Nagy ZK, Wagner I, Suhajda Á, Tobak T, Harasztos AH, Vigh T, et al. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym Lett. 2014;8(5):352-61.
  86. 80. Bhutto MA, Bhutto MA, Mangrio GS, Charan TR, Tunio AA. Study on the viability and sustainable release of rice rhizobacteria (Paenibacillus IBGE-MAB1) immobilized in nanofibers for enhanced rice seed coating and germination. BioNanoSci. 2024;14:3274-285. https://doi.org/10.1007/s12668-024-01460-7
  87. 81. Sivalingam S, Kunhilintakath A, Nagamony P, Paspulathi Parthasarathy V. Fabrication, toxicity and biocompatibility of Sesamum indicum infused graphene oxide nanofiber- A novel green composite method. Appl Nanosci. 2021;11:679-86. https://doi.org/10.1007/s13204-020-01596-4
  88. 82. Osanloo M, Arish J, Sereshti H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: A systematic review. Polym Bull. 2020;77:6085-104. https://doi.org/10.1007/s00289-019-03042-0
  89. 83. Meraz-Dávila S, Pérez-García CE, Feregrino-Perez AA. Challenges and advantages of electrospun nanofibers in agriculture: A review. Mater Res Express. 2021;8(4):042001. https://doi.org/10.1088/2053-1591/abee55
  90. 84. Mehrani Z, Ebrahimzadeh H, Moradi E. Use of aloin-based and rosin-based electrospun nanofibers as natural nanosorbents for the extraction of polycyclic aromatic hydrocarbons and phenoxyacetic acid herbicides by microextraction in packed syringe method prior to GC-FID detection. Microchim Acta. 2020;187:401. https://doi.org/10.1007/s00604-020-04374-9
  91. 85. Nooeaid P, Chuysinuan P, Pitakdantham W, Aryuwananon D, Techasakul S, Dechtrirat D. Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J Polym Environ. 2021;29:552-64. https://doi.org/10.1007/s10924-020-01902-9
  92. 86. Mirheidari F, Hatami M, Ghorbanpour M. Effect of different concentrations of IAA, GA3 and chitosan nano-fiber on physiomorphological characteristics and metabolite contents in roselle (Hibiscus sabdariffa L.). S Afr J Bot. 2022;145:323-33. https://doi.org/10.1016/j.sajb.2021.07.021
  93. 87. Atila D, Keskin D, Tezcaner A. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym. 2015;133:251-61. https://doi.org/10.1016/j.carbpol.2015.06.109
  94. 88. Avenot HF, Luna M, Michailides TJ. Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Prot. 2019;124:104838. https://doi.org/10.1016/j.cropro.2019.05.032
  95. 89. Chawla S, Patel DJ, Patel SH, Kalasariya RL, Shah PG. Behaviour and risk assessment of fluopyram and its metabolite in cucumber (Cucumis sativus) fruit and in soil. Environ Sci Pollut Res. 2018;25:11626-34. https://doi.org/10.1007/s11356-018-1439-y
  96. 90. Devarajan AK, Truu M, Gopalasubramaniam SK, Muthukrishanan G, Truu J. Application of data integration for rice bacterial strain selection by combining their osmotic stress response and plant growth-promoting traits. Front Microbiol. 2022;13:1058772. https://doi.org/10.3389/fmicb.2022.1058772
  97. 91. Dutta P, Kumari A, Mahanta M, Upamanya GK, Heisnam P, Borua S, et al. Nanotechnological approaches for management of soilborne plant pathogens. Front Plant Sci. 2023;14:1136233. https://doi.org/10.3389/fpls.2023.1136233
  98. 92. Hussain S, Hussain S, Qadir T, Khaliq A, Ashraf U, Parveen A, et al. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci Today. 2019;6(4):389-402. https://doi.org/10.14719/pst.2019.6.4.578
  99. 93. Kumar DA, Sabarinathan KG, Kannan R, Balachandar D, Gomathy M. Isolation and characterization of drought tolerant bacteria from rice phyllosphere. Int J Curr Microbiol App Sci. 2019;8(6):2655-64. https://doi.org/10.20546/ijcmas.2019.806.319
  100. 94. Maswada HF, Mazrou YS, Elzaawely AA, Eldein SM. Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review. Span J Agric Res. 2020;18(2):e08R01. https://doi.org/10.5424/sjar/2020182-16181
  101. 95. Gorim L, Asch F. Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. J Agron Crop Sci. 2012;198(2):81-91. https://doi.org/10.1111/j.1439-037X.2011.00490.x
  102. 96. Leinauer B, Serena M, Singh D. Seed coating and seeding rate effects on turfgrass germination and establishment. Horttechnology. 2010;20(1):179-85. https://doi.org/10.21273/HORTTECH.20.1.179
  103. 97. Willenborg CJ, Gulden RH, Johnson EN, Shirtliffe SJ. Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agron J. 2004;96(3):786-91. https://doi.org/10.2134/agronj2004.0786
  104. 98. Arun KD, Sabarinathan KG, Gomathy M, Kannan R, Balachandar D. Mitigation of drought stress in rice crop with plant growth promoting abiotic stress-tolerant rice phyllosphere bacteria. J Basic Microbiol. 2020;60(9):768-86. https://doi.org/10.1002/jobm.202000011
  105. 99. Fu J, Panhuis MiH. Hydrogel properties and applications. J Mater Chem B. 2019;7:1523-25. https://doi.org/10.1039/C9TB90023C
  106. 100. Ahmed EM. Hydrogel: Preparation, characterization and applications: A review. J Adv Res. 2015;6(2):105-21. https://doi.org/10.1016/j.jare.2013.07.006
  107. 101. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur Polym J. 2015;72:365-85. https://doi.org/10.1016/j.eurpolymj.2015.04.017
  108. 102. Hotta M, Kennedy J, Higginbotham C, Morris N. Durum wheat seed germination response to hydrogel coatings and moisture under drought stress. Am J Agric Biol Sci. 2016;11(2):67-75. https://doi.org/10.3844/ajabssp.2016.67.75
  109. 103. Mangold JM, Sheley RL. Effects of soil texture, watering frequency and a hydrogel on the emergence and survival of coated and uncoated crested wheatgrass seeds. Ecol Restor. 2007;25(1):6-11. https://doi.org/10.3368/er.25.1.6
  110. 104. Gesch RW, Archer DW. Influence of sowing date on emergence characteristics of maize seed coated with a temperature activated polymer. Agron J. 2005;97(6):1543-50. https://doi.org/10.2134/agronj2005.0054
  111. 105. Serena M, Leinauer B, Sallenave R, Schiavon M, Maier B. Turfgrass establishment from polymer-coated seed under saline irrigation. HortScience. 2012;47(12):1789-94. https://doi.org/10.21273/HORTSCI.47.12.1789
  112. 106. Ghassemi-Golezani K, Nikpour-Rashidabad N. Seed pretreatment and salt tolerance of dill: Osmolyte accumulation, antioxidant enzymes activities and essence production. Biocatal Agric Biotechnol. 2017;12:30-35. https://doi.org/10.1016/j.bcab.2017.08.014
  113. 107. Mahdavi B, Rahimi A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J Biosci. 2013;7:69-76.

Downloads

Download data is not yet available.