Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Physiological evaluation of nano DAP on growth and yield of tomato

DOI
https://doi.org/10.14719/pst.5596
Submitted
7 October 2024
Published
27-12-2024 — Updated on 17-05-2025
Versions

Abstract

Tomato (Solanum lycopersicum), a solanaceous crop, is widely cultivated worldwide. This study evaluates the impact of nano DAP (diammonium phosphate) on morphophysiological traits, biochemical properties, yield and quality parameters. Eight treatments comprising varying proportions of DAP and nano DAP were evaluated for traits including plant height, leaf area, chlorophyll index, total dry matter production, gas exchange parameters, leaf soluble protein, total soluble solids (TSS), ascorbic acid, titratable acidity, firmness and fruit yield. The hybrid tomato variety 'Shivam' was cultivated in pot culture under a glasshouse at Tamil Nadu Agricultural University, Coimbatore, using a completely randomized design with five replications. Foliar sprays with different proportions of nano DAP and DAP were applied 30 and 45 days after transplanting. Among the treatments, 75% RDNP (recommended nitrogen and phosphorus dose) combined with two foliar sprays of nano DAP at 0.7% (T5) significantly increased plant height (48.90 cm and 54.31 cm), chlorophyll index (40.05 and 42.15), dry matter production (55.45 g plant-1), TSS (5.52 °Brix), fruit production and ascorbic acid content. This treatment also improved gas exchange parameters,
fruit firmness and overall `growth and productivity compared to other treatments. Conversely, the absolute control group demonstrated the lowest performance across all parameters. The study highlights that combining both conventional fertilizers with nano DAP considerably improves tomato growth by enhancing nutrient absorption,
particularly nitrogen and phosphorus, which are essential for cell division, photosynthesis and energy transfer. Nano DAP, due to its small particle size and large surface area, effectively penetrates plant tissues, increasing nutrient availability, chlorophyll content and plant height. These findings underscore the potential of nano DAP to substantially enhance tomato yield and quality, thereby contributing to sustainable crop production.

References

  1. 1. Singh SK, Singh MK, Singh RK, Mishra SK, Singh D. Effect of micro-nutrients on growth and yield of tomato (Lycopersicon esculentum Mill.). The Pharma Innov J. 2021;10(2):108-11.
  2. 2. Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, et al. Lycopene: Food sources, biological activities and human health benefits. Oxid Med Cell Longev. 2021;2713511. https://doi.org/10.1155/2021/2713511
  3. 3. Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, et al. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2020;10(1):45. https://doi.org/10.3390/foods10010045
  4. 4. Sattar S, Iqbal A, Parveen A, Fatima E, Samdani A, Fatima H, et al. Tomatoes unveiled: A comprehensive exploration from cultivation to culinary and nutritional significance. Qeios. 2024. https://doi.org/10.32388/cp4z4w
  5. 5. FAO. Tomato production statistics 2023-2024. Rome: Food and Agriculture Organization of the United Nations; 2024.
  6. 6. Shreevastav CK, Subedi S, Gajurel S, Basnet P. A review on nutrient deficiency symptoms and effects on tomato plant. Food Agri Econ Rev. 2022;2(1):34-36. https://doi.org/10.26480/faer.01.2022.34.36
  7. 7. Balachandrakumar V, Sowmiya K, Shofiya M, Gopika K, Nithika M. Impact of nano DAP and Zn EDTA on cowpea growth and yield. Int J Plant Soil Sci. 2024;36(6):317-26. https://doi.org/10.9734/ijpss/2024/v36i64634
  8. 8. Zhang Z, Ma Y, Tian Y, Liu P, Zhang M, Liu Z, et al. Co-application of coated phosphate fertilizer and humic acid for wheat production and soil nutrient transport. Agronomy. 2024;14(8):1621. https://doi.org/10.3390/agronomy14081621
  9. 9. Fahdawi HMMA, Musleh MH. Effect of DAP fertilizer on yield and components of soft wheat cultivars. J Phy Conf Ser. 2020;1664(1):012108. https://doi.org/10.1088/1742-6596/1664/1/012108
  10. 10. Margenot AJ, Lee J. The fate of nitrogen of ammonium phosphate fertilizers: A blind spot. Agri Environ Lett. 2023;8(2):e20116. https://doi.org/10.1002/ael2.20116
  11. 11. Dhahri A, Hajji N. Heat recovery of a diammonium phosphates drying unit. Dry Technol. 2014;32(10):1179-87. https://doi.org/10.1080/07373937.2014.887575
  12. 12. Raliya R, Saharan V, Dimkpa C, Biswas P. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J Agri Food Chem. 2017;66(26):6487-503. https://doi.org/10.1021/acs.jafc.7b02178
  13. 13. Bárzana G, Garcia-Gomez P, Carvajal M. Nanomaterials in plant systems: Smart advances related to water uptake and transport involving aquaporins. Plant Nano Biol. 2022;1:100005. https://doi.org/10.1016/j.plana.2022.100005
  14. 14. Malik S, Muhammad K, Waheed Y. Nanotechnology: A revolution in modern industry. Molecules. 2023;28(2):661. https://doi.org/10.3390/molecules28020661
  15. 15. Chamuah S, Gogoi S, Bhattacharjee D, Barman D, Dutta S, Sharma S, et al. Effect of nano-DAP on soil characteristics and qualities of cabbage. Int J Plant Soil Sci. 2023;35(13):52-59. https://doi.org/10.9734/ijpss/2023/v35i132986
  16. 16. Maloth A, Thatikunta R, Parida BK, Naik DS, Varma NRG. Evaluation of nano-DAP on plant growth, enzymatic activity and yield in paddy (Oryza sativa L.). Int J Environ Clim Chng. 2024;14(1):890-97. https://doi.org/10.9734/ijecc/2024/v14i13907
  17. 17. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N, editors. Nanotechnologies in food and agriculture. Cham: Springer; 2015. p. 69-80. https://doi.org/10.1007/978-3-319-14024-7_3
  18. 18. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J. Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N, editors. Nanotechnologies in food and agriculture. Cham: Springer; 2015. p. 81-101. https://doi.org/10.1007/978-3-319-14024-7_4
  19. 19. Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM. Foliar application of nanoparticles: Mechanisms of absorption, transfer and multiple impacts. Environ Sci Nano. 2021;8(5):1196-210.
  20. 20. Alshaal T, El-Ramady H. Foliar application: From plant nutrition to biofortification. Environ Biodiv Soil Secur. 2017;1:71-83. https://doi.org/10.21608/jenvbs.2017.1089.1006
  21. 21. Radhamani R, Kannan R. Nondestructive and rapid estimation of leaf chlorophyll content of sugarcane using a SPAD meter. Int J Sci Res. 2016;5(4):2392-97. https://doi.org/10.21275/v5i4.15041602
  22. 22. Moualeu-Ngangue DP, Chen T, Stützel H. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci) curve and chlorophyll fluorescence measurements. New Phytol. 2016;213(3):1543-54. https://doi.org/10.1111/nph.14260
  23. 23. Lowry OH, Rosebrough NJ, Lewis Farr, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
  24. 24. Tigist M, Workneh TS, Woldetsadik K. Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol. 2011;50(3):477-86. https://doi.org/10.1007/s13197-011-0378-0
  25. 25. Ikewuchi CJ, Ikewuchi CC. Iodometric determination of the ascorbic acid (vitamin C) content of some fruits consumed in a university community in Nigeria. Glob J Pure Appl Sci. 2011;17(1):47-49.
  26. 26. Kumar A, Ram H, Kumar S, Kumar R, Yadav A, Gairola A, et al. A comprehensive review of nano-urea vs conventional urea. Int J PlantSoil Sci. 2023;35(23):32-40. https://doi.org/10.9734/ijpss/2023/v35i234212
  27. 27. Hagagg LF, Mustafa NS, Genaidy EA, El-Hady ES. Effect of spraying nano-NPK on growth performance and nutrients status for (Kalamat cv.) olive seedling. Bioscience Res. 2018;15(2):1297-302.
  28. 28. Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. 6th ed. MA, USA: Sinauer Associates Sunderland; 2015.
  29. 29. Marschner H. Marschner's mineral nutrition of higher plants. Academic Press; 2011.
  30. 30. Wang X, Xie H, Wang P, Yin H. Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials. 2023;16(8):3097. https://doi.org/10.3390/ma16083097
  31. 31. Alqasim NYFY, Ghazal NSAYA. Growth and yield response of four bread wheat cultivars, (Triticum aestivum L.), to spraying with NPK nano fertilizer. Tikrit J Agri Sci. 2024;24(2):197-213. https://doi.org/10.25130/tjas.24.2.14
  32. 32. Arif U, Hussain S, Shah SZ, Hamid A, Yaqoob A, Arif AA, et al. Interactive effect of phosphorus and zinc on the growth, yield and nutrient uptake of garlic (Allium sativum L.) variety Gulabi. Asian J Agri Food Sci. 2016;4(5):279-84.
  33. 33. Manikandan A, Subramanian K. Evaluation of zeolite-based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci. 2015;9(4):1-9. https://doi.org/10.9734/ijpss/2016/22103
  34. 34. Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131-39.
  35. 35. Preetha PS, Balakrishnan N. A review of nano fertilizers and their use and functions in soil. Inter J Curr Microbiol Appl Sci. 2017;6(12):3117-33. https://doi.org/10.20546/ijcmas.2017.612.364
  36. 36. Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: The case of phosphorus nanofertilizer. 3 Biotech. 2021;11:357. https://doi.org/10.1007/s13205-021-02907-4
  37. 37. Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, et al. Exploring the nano-wonders: Unveiling the role of nanoparticles in enhancing salinity and drought tolerance in plants. Front Plant Sci. 2024;14:1324176. https://doi.org/10.3389/fpls.2023.1324176
  38. 38. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem. 2017;5:78.
  39. 39. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866-75.
  40. 40. Ghafari H, Razmjoo J. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Int J Agron Plant Prod. 2013;4(11):2997-3003.
  41. 41. Kader AA. Flavor quality of fruits and vegetables. J Sci Food Agri. 2008;88(11):1863-68.
  42. 42. Maurya NPK, Bahadur NV, Shukla NPK, Topno NSE, Thakur NG. Effect of nano-multi micronutrients on growth, quality and economics of french bean. Ind J Hortic. 2024;81(02):191-95. https://doi.org/10.58993/ijh/2024.81.2.11
  43. 43. Ybaez QE, Sanchez PB, Badayos RB. Synthesis and characterization of nano zinc oxide foliar fertilizer and its influence on yield and postharvest quality of tomato. Philipp Agric Sci. 2020;103(1):55-65.
  44. 44. Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes. 2021;12(5):694. https://doi.org/10.3390/genes12050694
  45. 45. Sarker BC, Rahim MA. Yield and quality of mango (Mangifera indica L.) as influenced by foliar application of potassium nitrate and urea. Bangladesh J Agric Res. 2013;38(1):145-54. https://doi.org/10.3329/bjar.v38i1.15201
  46. 46. Kumar RP, Singh ON, Singh Y, Dwivedi S, Singh JP. Effect of integrated nutrient management on growth, yield, nutrient uptake and ecnomics of french bean (Phaseolus vulgaris). Ind J Agri Sci. 2009;79(2):122-28.
  47. 47. Faizan M, Hayat S. Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Pol J Nat Sci. 2019;34(6):87-105.
  48. 48. Prasad PNS, Subbarayappa CT, Sathish A, Ramamurthy V. Impact of zinc fertilization on tomato (Solanum lycopersicum L.) yield, zinc use efficiency, growth and quality parameters in eastern dry zone (EDZ) soils of Karnataka, India. Int J Plant Soil Sci. 2021;33(7):20-38. https://doi.org/10.9734/ijpss/2021/v33i730447
  49. 49. Singh RK, Mishra S, Bahadur V. Effect of nano-chitosan, nano-micronutrients and bio capsules on vegetative growth, flowering and fruiting attributes of strawberry (Fragaria× ananassa) cv. Winter Dawn. AMA. 2023;54:13401-11.

Downloads

Download data is not yet available.