Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Semiochemical techniques for the management of coconut insect pest

DOI
https://doi.org/10.14719/pst.5723
Submitted
11 October 2024
Published
14-12-2024

Abstract

Semiochemicals are chemical substances utilized by insects use to modify their physiology and behaviour and are classified as pheromones (intraspecific effects) and allelochemicals (interspecific effects). It plays a crucial role in Integrated Pest Management (IPM) as a marker of insect presence and a behavioural modifier that prevents pest dissemination and multiplication. Insect populations can be managed using various attractant-based strategies such as monitoring, mass trapping and attracting insect pests. These management methods require understanding insect chemical ecology and identifying the cues involved. Semiochemicals for managing key insect pests of coconut have been extensively studied. However, practical utility and awareness among farmers are limited. Major coconut pests are managed with effective and efficient attractants, pheromones and host volatiles. Semiochemical applications are gaining importance as a primary management strategy and provide significant scope for sustainable and eco-friendly pest management. Despite the noteworthy strides in developing semiochemical-based pest management approaches for coconut, a critical gap exists for further innovations to evolve solutions applicable to a broader array of significant pests and establish sustainable and highly effective pest management strategies. In light of this, the use of semiochemical techniques for sustainable pest management in coconut plantations is extensively discussed in this review.

References

  1. DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae) in health promotion and disease prevention. Asian Pac J Trop Med. 2011;4(3):241-7. https://doi.org/10.1016/S1995-7645(11)60078-3
  2. Lima E, Sousa C, Meneses L, Ximenes N, Júnior S, Vasconcelos G, et al. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res. 2015; 48:953-64. https://doi.org/10.1590/1414-431X20154773
  3. Perera L, Perera SA, Bandaranayake CK, Harries HC. Coconut. Oil Crops. 2010:369-96.
  4. Coconut Development Board. Package of practices for coconut cultivation. Available from: http://coconutboard.nic.in/Package.aspx Accessed June 15, 2024.
  5. Subaharan K, Bakthavatsalam N, Venugopal V. Semiochemical-based pest management of coconut red palm weevil, Rhynchophorus ferrugineus (Dryophthoridae: Coleoptera). Pest Manag Hortic Ecosyst. 2019;25(1):1-10.
  6. Winotai A. Integrated pest management of important insect pests of Coconut1. Cord. 2014;30(1):19-19. https://doi.org/10.37833/cord.v30i1.82
  7. Faleiro J. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci. 2006; 26(3):135-54. http://dx.doi.org/10.1079/IJT2006113
  8. Kumara A, Chandrashekharaiah M, Kandakoor SB, Chakravarthy A. Status and management of three major insect pests of coconut in the tropics and subtropics. New Horizons in Insect Science: Towards Sustainable Pest Management. 2015:359-81. http://dx.doi.org/10.1007/978-81-322-2089-3_32
  9. Lever RJAW. Pests of the coconut palm. Rome, Italy: Food & Agriculture Organization of the United Nations; 1969.
  10. Gitau CW, Gurr GM, Dewhurst CF, Fletcher MJ, Mitchell A. Insect pests and insect-vectored diseases of palms. Aust J Entomol. 2009;48(4):328-42. http://dx.doi.org/10.1111/j.1440-6055.2009.00724.x
  11. Abhishek TS, Dwivedi SA. Review on integrated pest management of coconut crop. Int J Entomol Res. 2021; 6:115-20.
  12. Faleiro JR, Jaques JA, Carrillo D, Giblin-Davis R, Mannion CM, Peña-Rojas E, Peña JE. Integrated Pest Management (IPM) of Palm Pests. In: Integrated Pest Management in the Tropics. New India Publishing Agency; New Delhi (India): 2016. p. 439-97.
  13. Lefroy HM. The more important insects injurious to Indian agriculture. Indian J Agric. 1907;1(2):113-52.
  14. Faleiro JR, Satarkar VR. Attraction of Food Baits for Use in Red Palm Weevil Rhynchophorus ferrugineus Olivier Pheromone Trap. Indian J Plant Protect. 2005; 33:23-5. https://doi.org/10.1016/j.jssas.2021.07.004
  15. Al-Dosary NM, Al-Dobai S, Faleiro JR. Review on the management of red palm weevil Rhynchophorus ferrugineus Olivier in date palm Phoenix dactylifera L. Emir J Food Agric. 2016;28:34-44. http://dx.doi.org/10.9755/ejfa.2015-10-897
  16. Josephrajkumar A, Mohan C, Prathibha PS, Rajkumar Nalinakumari T, Nair CPR. Pest dynamics and suppression strategies. The Coconut Palm (Cocos nucifera L.) Research and Development Perspectives. 2018:557-634. http://dx.doi.org/10.1007/978-981-13-2754-4_12
  17. Rao YR, Cherian MC, Ananthanarayanan KP. Infestation of Nephantis serinopa Meyrick in South India, and their control by the biological method. Indian J Entomol. 1948;10:205-47.
  18. Manjunath TM. India-coconut black-headed caterpillar on banana and coconut. FAO Plant Prot Bull. 1985; 33(2):71-2.
  19. Rao NC, Rao G, Roshan D, Ramanandam G. Successful eco-friendly management of coconut slug caterpillar, Macroplectra nararia Moore in Andhra Pradesh. J Plant Prot Environ. 2018; 15(2):22-5.
  20. Miller DR, Davidson JA. Armored scale insect pests of trees and shrubs (Hemiptera: Diaspididae). Ithaca, NY: Cornell University Press; 2005.
  21. Watson GW, Adalla CB, Shepard BM, Carner GR. Aspidiotus rigidus Reyne (Hemiptera: Diaspididae): a devastating pest of coconut in the Philippines. Agric For Entomol. 2015;17:1-8. https://doi.org/10.1111/afe.12074
  22. Martin JH. Whiteflies of Belize (Hemiptera: Aleyrodidae). Part 1: Introduction and account of the subfamily Aleurodicinae Quaintance & Baker. Zootaxa. 2004;681(1):1-119.
  23. Srinivasan T, Saravanan PA, Josephrajkumar A, Sridharan S, David PM. Invasion of the Rugose spiralling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) in Pollachi tract of Tamil Nadu, India. Madras Agric J. 2016; 103:10-12. http://dx.doi.org/10.29321/MAJ.10.001047
  24. Shanas S, Joseph J, Tom J, Anju KG. First report of the invasive rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) from the old world. Entomon. 2016;41(4):365-8. https://doi.org/10.33307/entomon.v41i4.227
  25. Mohan C, Josephrajkumar A, Babu M, Prathibha PS, Krishnakumar V, Hegde V, Chowdappa P. Invasive rugose spiralling whitefly on coconut. Technical Bulletin No. 117, (Centenary Series 60). ICAR-CPCRI, Regional Station, Kayamkulam; 2017. 16 p.
  26. Josephrajkumar A, Mohan C, Babu M, Krishna A, Krishnakumar V, Hegde V, Chowdappa P. First record of the invasive Bondar's nesting whitefly, Paraleyrodes bondari Peracchi on coconut from India. Phytoparasitica. 2019;47(3):333-9. http://dx.doi.org/10.1007/s12600-019-00741-2
  27. Borowiec N, Quilici S, Martin J, Issimaila MA, Chadhouliati AC, Youssoufa MA, et al. Increasing distribution and damage to palms by the Neotropical whitefly, Aleurotrachelus atratus (Hemiptera: Aleyrodidae). J Appl Entomol. 2010;134(6):498-510. http://dx.doi.org/10.1111/j.1439-0418.2009.01450.x
  28. Abraham V, Mohandas N. Chemical control of the white grub Leucopholis coneophora Burm., a pest of the coconut palm. Trop Agric. 1988;65(4):335-7
  29. Mohan C, Josephrajkumar A, Prathibha PS, Sujithra M, Sajan JV, Anes K. Pests and their management in coconut. Trends Hortic Entomol. 2022;1411-39. http://dx.doi.org/10.1007/978-981-19-0343-4_60
  30. Vidyasagar P, Bhat SK. Pest management in coconut gardens. J Plant Crops. 1991;19(2):163-82.
  31. Kalidas P, Subbanna A. Pests and their management in oil palm. Trends in Horticultural Entomology. 2022;1457-75. http://dx.doi.org/10.1007/978-981-19-0343-4_62
  32. Seni A. Arthropod pests of Coconut, Cocos nucifera L. and their management. Int J Environ Agric Biotechnol. 2019;4(4):1018-24. http://dx.doi.org/10.22161/ijeab.4419
  33. Rajan P. Gradient outbreak of coconut slug caterpillar, Macroplectra nararia Moore, in East coast of India. Cord. 2011;27(1):7-7. http://dx.doi.org/10.37833/cord.v27i1.124
  34. Rao N, Snehalatharani A, Ramanandam G, Maheswarappa H. Management of coconut slug caterpillar (Macroplectra nararia) with light traps. J Plant Crops. 2016;44(1):57-61. https://doi.org/10.19071/jpc.2016.v44.i1.3016
  35. Josephrajkumar A, Chandrika M, Rajan P, Regi J, Chandramohanan R, Jacob P. Pest management in coconut nursery. Technical Bulletin. 2012;73:16.
  36. Mohan P. Management of the sucking pest complex coconut eriophyid mite, coreid bug, and button mealy bug infesting coconut bunches [dissertation]. Vellayani, India: Dept. of Agricultural Entomology, College of Agriculture; 2001.
  37. Unnimon N. Distribution of coconut lacewing bug Stephanitis typicus Distant and its natural enemy complex and assessment of biocontrol potential of the major natural enemies. Department of Agricultural Entomology, College of Horticulture, Vellanikkara; 1994.
  38. Navia D, Gondim MG, Aratchige NS, de Moraes GJ. A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest. Exp Appl Acarol. 2013;59:67-94. https://doi.org/10.1007/s10493-012-9634-x
  39. Varadarajan M, David P. Population dynamics of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and associated arthropods in Tamil Nadu, India. Int J Trop Insect Sci. 2002;22(1):47-59. https://doi.org/10.1017/S1742758400015058
  40. Mahapatro G, Kumar S. Review on the incidence and management of coconut termites. Indian J Entomol. 2015;77(2):152-9. http://dx.doi.org/10.5958/0974-8172.2015.00031.0
  41. Llácer E, Dembilio O, Jacas JA. Evaluation of the efficacy of an insecticidal paint based on chlorpyrifos and pyriproxyfen in a microencapsulated formulation against Rhynchophorus ferrugineus (Coleoptera: Curculionidae). J Econ Entomol. 2010;103(2):402-8. https://doi.org/10.1603/ec09310
  42. Dembilio Ó, Jaques JA. Biology and management of red palm weevil. In: Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges. Springer; 2015. p. 13-36. http://dx.doi.org/10.1007/978-3-319-24397-9_2
  43. Vidyasagar P, Aldosari S, Sultan E, Al Saihati A, Khan RM. Efficiency of optimal pheromone trap density in management of red palm weevil, Rhynchophorus ferrugineus Olivier. Afr J Agric Res. 2016;11(12):1071-8. http://dx.doi.org/10.5897/AJAR2013.6817
  44. Brito N, Navickiene S, Polese L, Jardim E, Abakerli R, Ribeiro M. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 2002;957(2):201-9. https://doi.org/10.1016/S0021-9673(02)00351-5
  45. Wakil W, Yasin M, Qayyum MA, Ghazanfar MU, Al-Sadi AM, Bedford GO, et al. Resistance to commonly used insecticides and phosphine fumigant in red palm weevil, Rhynchophorus ferrugineus (Olivier) in Pakistan. PLoS One. 2018;13(7). https://doi.org/10.1371/journal.pone.0192628
  46. El-Ghany N. Semiochemicals for controlling insect pests. J Plant Prot Res. 2019;59(1):1-11. https://doi.org/10.24425/jppr.2019.126036
  47. Law JH, Regnier FE. Pheromones. Annu Rev Biochem. 1971;40(1):533-48. https://doi.org/10.1146/annurev.bi.40.070171.002533
  48. Shorey HH, McKelvey J Jr. Chemical control of insect behavior. Theory and application. New York: Wiley; 1977. https://doi.org/10.1126/science.200.4343.757.b
  49. Scriber JM. Host-plant suitability. In: Chemical ecology of insects. New York: Springer; 1984. p. 159-202. https://doi.org/10.1007/978-1-4899-3368-3_7
  50. Weinzierl R, Henn T, Koehler PG, Tucker CL. Insect attractants and traps [internet]. ENY277. [Accessed June 23 2024]. Available from: http://ufdcimages.uflib.ufl.edu/IR/00/00/27/94/00001/IN08000.pdf
  51. Paudel S, Jackson TA, Mansfield S, Ero M, Moore A, Marshall SD. Use of pheromones for monitoring and control strategies of coconut rhinoceros beetle (Oryctes rhinoceros): A review. Crop Prot. 2023:106400. https://doi.org/10.1016/j.cropro.2023.106400
  52. Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol. 2010; 36:80-100. https://doi.org/10.1007/s10886-009-9737-y
  53. Guarino S, Peri E, Lo Bue P, Germanà MP, Colazza S, Anshelevich L, et al. Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant-baited traps in an urban environment. Phytoparasitica. 2013;41(1):79-88.
  54. Vacas S, Abad-Paya M, Primo J, Navarro-Llopis V. Identification of pheromone synergists for Rhynchophorus ferrugineus trapping systems from Phoenix canariensis palm volatiles. J Agric Food Chem. 2014;62(26):6053-64. https://doi.org/10.1021/jf502663y
  55. Oehlschlager AC, Prior R, Perez AL, Gries R, Gries G, Pierce HD, et al. Structure, chirality, and field testing of a male-produced aggregation pheromone of Asian palm weevil Rhynchophorus bilineatus (Montr.) (Coleoptera: Curculionidae). J Chem Ecol. 1995; 21:1619-29. https://doi.org/10.1007/BF02035156
  56. Knipling EF. The basic principles of insect population suppression and management. US Department of Agriculture; 1979.
  57. El-Sayed AM, Suckling DM, Wearing CH, Byers JA. Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol. 2006; 99(5):1550-64. https://doi.org/10.1603/0022-0493-99.5.1550
  58. Lu H, Lyu B, Tang J, Wu Q, Wyckhuys KA, Le KH, et al. Ecology, invasion history and biodiversity-driven management of the coconut black-headed caterpillar Opisina arenosella in Asia. Front Plant Sci. 2023; 14:1116221. https://doi.org/10.3389/fpls.2023.1116221
  59. Faleiro JR, El-Saad MA, Al-Abbad AH. Pheromone trap density to mass trap Rhynchophorus ferrugineus (Coleoptera: Curculionidae/Rhynchophoridae/Dryophthoridae) in date plantations of Saudi Arabia. Int J Trop Insect Sci. 2011; 31:75-7. https://doi.org/10.1017/S1742758411000099
  60. Kamala Jayanthi P, Aurade RM, Kempraj V, Chakravarthy A, Verghese A. Glimpses of semiochemical research applications in Indian horticulture: present status and future perspectives. New Horizons in Insect Science: Towards Sustainable Pest Management. 2015:239-57. http://dx.doi.org/10.1007/978-81-322-2089-3
  61. Kurian C, Abraham VA, Ponnamma KN. Attractants, an aid in red palm weevil management. Placrosym 6. 2007;581-5.
  62. Jayanth KP, Mathew MT, Narabenchi GB, Bhanu KRM. Impact of large-scale mass trapping of red palm weevil Rhynchophorus ferrugineus Olivier in coconut plantations in Kerala using indigenously synthesized aggregation pheromone lures. Indian Coconut J. 2007; 38(2):2-9.
  63. Giblin-Davis RM, Faleiro JR, Jacas JA, Peña JE, Vidyasagar P. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In: Potential Invasive Pests of Agricultural Crops. Cabi; 2013. p. 33. http://dx.doi.org/10.13140/2.1.1029.1202
  64. El-Shafie HAF, Faleiro JR. Semiochemicals and their potential use in pest management. In: Biological control of pest and vector insects. IntechOpen; 2017. p. 3-22. https://dx.doi/0.5772/66463
  65. Hallett RH, Perez AL, Gries G, Gries R, Pierce HD, Yue J, et al. Aggregation pheromone of coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae). J Chem Ecol. 1995; 21:1549-70. https://doi.org/10.1007/BF02035152
  66. Cork A. Pheromone manual. Chatham Maritime: Natural Resources Institute; 2004. Chapter 4:13-17.
  67. Heuskin S, Verheggen FJ, Haubruge E, Wathelet JP, Lognay G. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol Agron Soc Environ. 2011;15(3):459-70.
  68. Robinette SL, Brüschweiler R, Schroeder FC, Edison AS. NMR in metabolomics and natural products research: two sides of the same coin. Acc Chem Res. 2012;45(2):288-97. https://doi.org/10.1021/ar2001606
  69. El-Sebay Y. Ecological studies on the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Egypt. Egypt J Agric Res. 2003;81(2):523-9.
  70. Guarino S, Bue PL, Peri E, Colazza S. Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment. Pest Manag Sci. 2011;67(1):77-81. https://doi.org/10.1002/ps.2035
  71. Guarino S, Colazza S, Peri E, Bue PL, Germanà MP, Kuznetsova T, et al. Behaviour-modifying compounds for management of the red palm weevil (Rhynchophorus ferrugineus Oliver). Pest Manag Sci. 2015;71(12):1605-10. https://doi.org/10.1002/ps.3966
  72. Gunawardena NE, Bandarage UK. 4-Methyl-5-Nonanol (Ferrugineol) as an aggregation pheromone of the coconut pest, Rhynchophorus ferrugineus (Coleoptera: Curculionidae): Synthesis and use in a preliminary field assay. J Nat Sci Found Sri Lanka. 1995; 23(2):71-9. https://doi.org/10.4038/JNSFSR.V23I2.5842
  73. Hallett R, Gries G, Gries R, Borden J, Czyzewska E, Oehlschlager A, et al. Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften. 1993; 80:328-31. https://doi.org/10.1007/BF01141908
  74. Sadakathulla S, Ramachandran T. Efficacy of naphthalene balls in the control of rhinoceros beetle attacks in coconut. COCOS. 1990; 8:23-5.
  75. Maruthadurai R, Ramesh R. Mass trapping of red palm weevil and rhinoceros beetle in coconut with aggregation pheromone. Indian J Entomol. 2020;82(3):439-41. http://dx.doi.org/10.5958/0974-8172.2020.00114.5
  76. Bhanu K. Monitoring emergence pattern of coconut black-headed caterpillar Opisina arenosella Walker (Lepidoptera: Oecophoridae) using sex pheromone traps. Cord. 2013;29(2):8-8. https://doi.org/10.37833/cord.v29i2.87
  77. Tavera MAA, Cruz DJ, Almarinez BJ, VI JSC, Amalin D, Janairo JIB. Volatile chemical profile of the feeding hosts of the coconut scale insect, Aspidiotus rigidus Reyne. Agric Nat Resour. 2019;53(2):168-72.
  78. Al-Shawaf AM, Al-Shagag A, Al-Bagshi M, Al-Saroj S, Al-Bather S, et al. A quarantine protocol against red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) in date palm. J Plant Prot Res. 2013;53(4):409-15. http://dx.doi.org/10.2478/jppr-2013-0061
  79. Faleiro JR, Satarkar VR. Attraction of food baits for use in red palm weevil Rhynchophorus ferrugineus Olivier pheromone trap. Indian J Plant Protect. 2005; 33:23-5. http://dx.doi.org/10.1002/ps.4289
  80. Faleiro JR, Chellapan M. Attraction of red palm weevil Rhynchophorus ferrugineus Oliv. to ferrugineol based pheromone lures in coconut gardens. J Trop Agric. 1999; 37:60-3.
  81. Abd El-Wahab A, Abd El-Fattah A, El-Shafei W, El Helaly A. Efficacy of aggregation nano gel pheromone traps on the catchability of Rhynchophorus ferrugineus (Olivier) in Egypt. Brazil J Biol. 2020; 81:452-60. https://doi.org/10.1590/1519-6984.231808
  82. Vibina V, Kesavan S. Olfactory response of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae), to host/food volatiles. J Plant Crops. 2019;47(1):41-7. https://doi.org/10.25081/jpc.2019.v47.i1.5533
  83. Chakravarthy AK, Chandrashekharaiah M, Kandakoor SB, Nagaraj DN. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms. J Environ Biol. 2014;35(3):479-84.
  84. Vander Meer RK, Ghatak UR, Alam SK, Chakraborti PC. (±)-Des-N-Morphinan: a unique bridged hydrocarbon attractant for the rhinoceros beetle, Oryctes rhinoceros; and development of an olfactometer. Environ Entomol. 1979;8(1):6-10.
  85. Maddison PA, Beroza M, McGovern TP. Ethyl chrysanthemumate as an attractant for the coconut rhinoceros beetle. J Econ Entomol. 1973;66(3):591.
  86. Gries G, Gries R, Perez AL, Oehlschlager AC, Gonzales LM, Pierce HD Jr. Aggregation pheromone of the African rhinoceros beetle, Oryctes monoceros (Olivier)(Coleoptera: Scarabaeidae). Z Naturforsch C. 2014;49(5):363-66.
  87. Bhanu KRM, Hall DR, Awalekar RV, Chandrashekharaiah M, Divya TN, Prabhakara MS, Jayanth KP. Identification and field evaluation of female sex pheromone of leaf-eating caterpillar, Opisina arenosella (Lepidoptera: Oecophoridae). Int J Trop Insect Sci. 2018; 38:274-82. https://doi.org/10.1017/S1742758418000243
  88. Chandrashekharaiah. Pheromone mass trapping technology for management of coconut black-headed caterpillar, Opisina arenosella Walker (Lepidoptera: Oecophoridae) in Southern Karnataka. The 12th International Course in Chemical Ecology, Gena, Germany; 2013.
  89. Ghosh SM, Abdurahiman UC. Role of Kairomones in host selection by Apanteles taragamae Wilkinson, a larval parasitoid of Opisina arenosella Walker. Entomon. 1996;21(3):259-62.
  90. Subaharan K. Educating the parasitoids: olfactory learning in Goniozus nephantidis Muesbeck, the parasitoid of coconut black beaded caterpillar, Opisina arenosella Walk. Central Plantation Crops Research Institute (Indian Council of Agricultural Research); 2008. p. 35
  91. Bakthavatsalam N, Subharan K, Mani M. Semiochemicals and their potential use in pest management in horticultural crops. Trends Hortic Entomol. 2022;283-312. https://doi.org/10.1007/978-981-19-0343-4_9
  92. Elango K. Biology, distribution and host range of new invasive pest of India coconut rugose spiralling whitefly Aleurodicus rugioperculatus Martin in Tamil Nadu and the status of its natural enemies. Int J Agric Sci. 2019; 11(9):8423-6.
  93. Chandrasekaran G, Subramanian J, Marimuthu M. Volatile blooms of Aleurodicus rugioperculatus Martin infested coconut and banana leaves attracting parasitoid Encarsia guadeloupae Viggiani. Kufa J Agric Sci. 2023;15(2):114-27. http://dx.doi.org/10.36077/kjas/2023/v15i2.12142

Downloads

Download data is not yet available.