Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Characterization of biochar produced from paperboard sludge: A sustainable approach for waste management and resource recovery

DOI
https://doi.org/10.14719/pst.5810
Submitted
14 October 2024
Published
25-12-2024
Versions

Abstract

The pulp and paperboard industry are a significant industrial sector that consumes large quantities of fresh water and generates substantial volumes of wastewater. Treating this wastewater produces a considerable amount of sludge, which poses serious environmental challenges. This study proposes a sustainable solution by converting paperboard sludge (PBS) into biochar through slow pyrolysis at temperatures ≤500°C, offering an alternative approach to waste management and resource conservation. The physicochemical analysis of paperboard sludge biochar (PBSB) revealed a neutral pH of 7.49, EC (electrical conductivity) of 0.09 dS m-1, an OC (organic carbon) content of 38.12% and a calcium carbonate (CaCO3) content of 24.5%. Proximate analysis of PBSB revealed an increased fixed carbon content of 10.27 %, total organic carbon (TOC) of 7.13% and reduced volatile matter and moisture levels. Micronutrients viz., iron (Fe) (5.06 mg L-1), manganese (Mn) (419.3 mg L-1), copper (Cu) (26.3 mg L-1) and zinc (Zn) (66.1 mg L-1), were also observed in PBSB. Fourier Transform Infrared Spectroscopy (FTIR) analysis identified various carbon-containing functional groups, including C-Cl, C-N, C-C, H-C=O, C-H and -C≡C-H, indicating substantial chemical transformations during pyrolysis. Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) analysis revealed that PBSB consists of fine particles with a coarse, fluffy, spongy, porous structure, making it ideal for water adsorption. Elemental analysis through x-ray diffraction (XRD) showed high carbon and oxygen content and significant amounts of aluminosilicates, carbonates and nutrients like phosphorus (P) and potassium (K), suggesting PBSB as a potential slow-release fertilizer. This research highlights the potential of biochar derived from paperboard waste as a sustainable solution for effective waste management and resource recovery.

References

  1. 1. Jaria G, Silva CP, Ferreira CI, Otero M, Calisto V. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy. J Environ Manag. 2017;188:203-11. https://doi.org/10.1016/j.jenvman.2016.12.004
  2. 2. Zhang Y, Chen P, Liu S, Peng P, Min M, Cheng Y, et al. Effects of feedstock characteristics on microwave-assisted pyrolysis–A review. Bioresour Technol. 2017;230:143-51. https://doi.org/10.1016/j.biortech.2017.01.046
  3. 3. Capodaglio A, Callegari A, Dondi D. Properties and beneficial uses of biochar from sewage sludge pyrolysis. In: 5th International Conference on Sustainable Solid Waste Management; 2017.
  4. 4. Tawalbeh M, Rajangam AS, Salameh T, Al-Othman A, Alkasrawi M. Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. Int J Hydrogen Energy. 2021;46(6):4761-75. https://doi.org/10.1016/j.ijhydene.2020.02.166
  5. 5. Bajpai P. Management of pulp and paper mill waste. Springer; 2015. https://doi.org/10.1007/978-3-319-11788-1
  6. 6. Likon M, Trebše P. Recent advances in paper mill sludge management. In: Show KY, Guo X, editors. Industrial Waste. Intechopen; 2012. p. 73-90. https://doi.org/10.5772/37043
  7. 7. Reckamp JM, Garrido RA, Satrio JA. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products. Biomass Bioenergy. 2014;71:235-44. https://doi.org/10.1016/j.biombioe.2014.10.003
  8. 8. Taskin E, de Castro Bueno C, Allegretta I, Terzano R, Rosa AH, Loffredo E. Multi analytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications. Chemosphere. 2019;233:422-30. https://doi.org/10.1016/j.chemosphere.2019.05.204
  9. 9. Ferreira CI, Calisto V, Cuerda-Correa EM, Otero M, Nadais H, Esteves VI. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis. Bioresour Technol. 2016;218:918-25. https://doi.org/10.1016/j.biortech.2016.07.047
  10. 10. Schofield HK, Pettitt TR, Tappin AD, Rollinson GK, Fitzsimons MF. Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Sci Total Environ. 2019;690:1228-36. https://doi.org/10.1016/j.scitotenv.2019.07.116
  11. 11. Manyà JJ. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ Sci Technol. 2012;46(15):7939-54. https://doi.org/10.1021/es301029g
  12. 12. Jackson M. Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi, India; 1973.
  13. 13. Nelson DW, Sommers LE. Total carbon, organic carbon and organic matter. In: Page AL, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. American Society of Agronomy, Inc., Soil Science Society of America, Inc. 1982. p. 539-79. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  14. 14. Méndez A, Fidalgo JM, Guerrero F, Gascó G. Characterization and pyrolysis behaviour of different paper mill waste materials. J Anal Appl Pyrolysis. 2009;86(1):66-73. https://doi.org/10.1016/j.jaap.2009.04.004
  15. 15. Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis. 2013;101:72-78. https://doi.org/10.1016/j.jaap.2013.02.010
  16. 16. Oumabady S, Sebastian SP, Kamaludeen SPB, Ramasamy M, Kalaiselvi P, Parameswari E. Preparation and characterization of optimized hydrochar from paper board mill sludge. Sci Rep. 2020;10(1):773. https://doi.org/10.1038/s41598-019-57163-7
  17. 17. Guo M. The 3R principles for applying biochar to improve soil health. Soil Syst. 2020;4(1):9. https://doi.org/10.3390/soilsystems4010009
  18. 18. Sabarish K, Sebastian SP, Maheswari M, Balasubramaniam P, Ejilane J. Production and characterization of paper board mill ETP sludge derived hydrochar. Int J Environ Clim Change. 2021;11(11):1-8. https://doi.org/10.9734/ijecc/2021/v11i1130511
  19. 19. Venkatesh G, Gopinath KA, Reddy KS, Reddy BS, Prabhakar M, Srinivasarao C, et al. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability. 2022;14(4):2295. https://doi.org/10.3390/su14042295
  20. 20. Junior A, Guo M. Efficacy of sewage sludge derived biochar on enhancing soil health and crop productivity in strongly acidic soil. Front Soil Sci. 2023;3:1066547. https://doi.org/10.3389/fsoil.2023.1066547
  21. 21. Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev. 2015;45:359-78. https://doi.org/10.1016/j.rser.2015.01.050
  22. 22. Vikrant K, Kim KH, Ok YS, Tsang DC, Tsang YF, Giri BS, et al. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci Total Environ. 2018;616:1242-60. https://doi.org/10.1016/j.scitotenv.2017.10.193
  23. 23. Yaashikaa P, Kumar PS, Varjani S, Saravanan A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Rep. 2020;28:e00570. https://doi.org/10.1016/j.btre.2020.e00570
  24. 24. Lehmann J, Joseph S. Biochar for environmental management: An introduction. In: Lehmann J, Joseph S, editors. Biochar for environmental management. Routledge. 2015; p.1-13. https://doi.org/10.4324/9781003297673-1
  25. 25. Turner T, Wheeler R, Oliver IW. Evaluating land application of pulp and paper mill sludge: A review. J Environ Manag. 2022;317:115439. https://doi.org/10.1016/j.jenvman.2022.115439
  26. 26. Holladay JE, White JF, Bozell JJ, Johnson D. Top value added chemicals from biomass-volume II, results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); 2007. https://doi.org/10.2172/921839
  27. 27. Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag. 2011;92(1):223-28. https://doi.org/10.1016/j.jenvman.2010.09.008
  28. 28. Bolan NS, Kunhikrishnan A, Choppala GK, Thangarajan R, Chung JW. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci Total Environ. 2012;424:264-70. https://doi.org/10.1016/j.scitotenv.2012.02.061
  29. 29. Mandal S, Pu S, Adhikari S, Ma H, Kim DH, Bai Y, et al. Progress and future prospects in biochar composites: Application and reflection in the soil environment. Crit Rev Environ Sci Technol. 2021;51(3):219-71. https://doi.org/10.1080/10643389.2020.1713030
  30. 30. Ralebitso-Senior TK, Orr C. Microbial ecology analysis of biochar-augmented soils: Setting the scene. In: Ralebitso-Senior TK, Orr C, editors. Biochar Application. Elsevier. 2016; p. 1-40. https://doi.org/10.1016/B978-0-12-803433-0.00001-1
  31. 31. Manoko MC, Chirwa EMN, Makgopa K. Structural elucidation of magnetic biochar derived from recycled paper waste sludge. Chem Eng Trans. 2021;89:193-98. https://doi.org/10.3303/CET2188032
  32. 32. Mohan D, Sarswat A, Ok YS, Pittman Jr CU. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–A critical review. Bioresour Technol. 2014;160:191-202. https://doi.org/10.1016/j.biortech.2014.01.120
  33. 33. Yadav S, Chandra R. Detection and assessment of the phytotoxicity of residual organic pollutants in sediment contaminated with pulp and paper mill effluent. Environ Monit Assess. 2018;190:581. https://doi.org/10.1007/s10661-018-6947-1
  34. 34. dos Reis SG, Bergna D, Tuomikoski S, Grimm A, Lima EC, Thyrel M, et al. Preparation and characterization of pulp and paper mill sludge-activated biochars using alkaline activation: A box–Behnken design approach. ACS Omega. 2022;7(36):32620-30. https://doi.org/10.1021/acsomega.2c04290
  35. 35. Lima RMAP, dos Reis GS, Thyrel M, Alcaraz-Espinoza JJ, Larsson SH, de Oliveira HP. Facile synthesis of sustainable biomass-derived porous biochars as promising electrode materials for high-performance supercapacitor applications. Nanomaterials. 2022;12(5):866. https://doi.org/10.3390/nano12050866
  36. 36. Liang J, Chen Y, Cai M, Gan M, Zhu J. One-pot pyrolysis of metal-embedded biochar derived from invasive plant for efficient Cr (VI) removal. J Environ Chem Eng. 2021;9(4):105714. https://doi.org/10.1016/j.jece.2021.105714
  37. 37. Nartey OD, Zhao B. Biochar preparation, characterization and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv Mater Sci Eng. 2014;2014:715398. https://doi.org/10.1155/2014/715398
  38. 38. Wang Y, Zhang K, Lu L, Xiao X, Chen B. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. Environ Pollut. 2020;265(PtB):114772. https://doi.org/10.1016/j.envpol.2020.114772
  39. 39. Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, et al. Biochar and its importance on nutrient dynamics in soil and plant. Biochar. 2020;2:379-420. https://doi.org/10.1007/s42773-020-00065-z
  40. 40. dos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, et al. A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2 and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A: Physicochem Eng Asp. 2022;642:128626. https://doi.org/10.1016/j.colsurfa.2022.128626
  41. 41. Deepika, Samriti, Sharma G, Kaur H, Kumar S, Chadha P. Sustainable utilization of industrial sludge in the construction industry. In: Kumar V, Bhat SA, Verma P, Kumar S, editors. Recent trends in management and utilization of industrial sludge. Springer, Cham; 2024. p. 209:53. https://doi.org/10.1007/978-3-031-58456-5_8
  42. 42. Harmsen J, Naidu R. Bioavailability as a tool in site management. J Hazard Mater. 2013;261:840-46. https://doi.org/10.1016/j.jhazmat.2012.12.044
  43. 43. Zhao B, Zhang J. Tetracycline degradation by peroxydisulfate activated by waste pulp/paper mill sludge biochars derived at different pyrolysis temperature. Water. 2022;14(10):1583. https://doi.org/10.3390/w14101583
  44. 44. Liu Z, Hughes M, Tong Y, Zhou J, Kreutter W, Lopez HC, et al. Paper mill sludge biochar to enhance energy recovery from pyrolysis: A comprehensive evaluation and comparison. Energy. 2022;239(Pt A):121925. https://doi.org/10.1016/j.energy.2021.121925

Downloads

Download data is not yet available.