Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Influential factors in haploid embryo induction of triticale (× Triticosecale) through wide hybridization with maize (Zea mays L.)

DOI
https://doi.org/10.14719/pst.5819
Submitted
14 October 2024
Published
17-05-2025 — Updated on 27-05-2025
Versions

Abstract

Generating doubled haploids (DHs) is crucial for accelerating the breeding process and facilitating the creation of crop-mapping populations. Although other cultures or pollination techniques with Hordeum bulbosum have proven effective for haploid production in common wheat, similar efforts in triticale have met with limited success. Cross breeding with maize was employed to generate haploid seedlings and subsequently, fertile DHs in triticale. The current research investigates the effect of four different auxin treatments for postpollination application in triticale × maize crosses, using combinations of 2, 4-D (2,4-dichlorophenoxyacetic acid), silver nitrate and dicamba. Among the four treatments, T3 (2, 4-D + dicamba at 100 mg/L + 85 mg/L, respectively) and T4 (2, 4-D + dicamba at 100 mg/L + 100 mg/L, respectively) were the most effective in inducing haploid embryos and achieving plant regeneration. The frequencies of haploid embryo induction were 31.46% and 30.61%, while plant regeneration frequencies were 11.53% and 11.11%, respectively. Determination of the phytohormone combination and its concentration is vital to affecting haploid embryo induction in triticale (× Triticosecale). Following wide hybridization with maize (Zea mays L.) has opened new possibilities in the triticale breeding program.

References

  1. 1. Wilson S. II. Wheat and rye hybrids. Transactions of the botanical society of Edinburgh. 1873;12(1-4):286–88. https://doi.org/10.1080/03746607309469536
  2. 2. Slusarkiewicz-Jarzina A, Pudelska H, Wozna J, Pniewski T. Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genet. 20176;58(3):287–95. https://doi.org/10.1007/s13353-016-0387-9
  3. 3. Chaudhary HK, Sharma PK, ManoJ NV, Singh K. New frontiers in chromosome elimination-mediated doubled haploidy breeding: Focus on speed breeding in bread and durum wheat. Indian J Genet Plant Breed. 2019;79(Sup-01):254-63. https://dx.doi.org/10.31742/IJGPB.79S.1.16
  4. 4. Patial M, Chaudhary HK, Sharma N, Sundaresha S, Kapoor R, Pal D, et al. Effect of different in vitro and in vivo variables on the efficiency of doubled haploid production in Triticum aestivum L. using Imperata cylindrica-mediated chromosome elimination technique. Cereal Res Commun. 2021;49(1):133–40. https://doi.org/10.1007/s42976-020-00069-2
  5. 5. Mahato A, Chaudhary HK. Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed. 2015;134(4):379–83. https://doi.org/10.1111/pbr.12288
  6. 6. Wedzony M, Zur I, Krzewska M, Dubas E, Szechynska-Hebda M, Wasek I. Doubled haploids in Triticale. In: Eudes F, editor. Triticale [Internet]. Cham: Springer International Publishing; 2015. p. 111–28. https://doi.org/10.1007/978-3-319-22551-7_6
  7. 7. Bonjean AP, Angus WJ. The world wheat book: A history of wheat breeding. Paris: Lavoisier. Tec & Doc; 2001. https://doi.org/10.1007/BF03543695
  8. 8. Garcia-Llamas C, Ramirez MC, Ballesteros J. Effect of pollinator on haploid production in durum wheat crossed with maize and pearl millet. Plant Breed. 2004;123(2):201–03. https://doi.org/10.1046/j.1439-0523.2003.00904.x
  9. 9. Müntzing A. Triticale, results and problems. Berlin: Parey; 1979.
  10. 10. Wedzony M, Marcinska I, Ponitka A, Slusarkiewicz-Jarzina A, Wozna J. Production of doubled haploids in triticale (×Triticosecale Wittm.) by means of crosses with maize (Zea mays L.) using picloram and dicamba. Plant Breed. 1998;117(3):211–15.
  11. 11. Suenaga K. Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Resour. 1994;(9):83–139.
  12. 12. Mujeeb-Kazi A, Riera-Lizarazu O. Poly haploid production in the Triticeae by sexual hybridization. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants: Volume 1 — Fundamental Aspects and Methods [Internet]. Dordrecht: Springer Netherlands; 1996. p. 275–96. https://doi.org/10.1007/978-94-017-1860-8_16
  13. 13. Laurie DA, Bennett MD. Wheat × maize hybridization. Canad J Genet Cytol. 1986;28(2):313–16. https://doi.org/10.1139/g86-046
  14. 14. Almouslem AB, Jauhar PP, Peterson TS, Bommineni VR, Rao MB. Haploid durum wheat production via hybridization with maize. Crop Sci. 1998;38(4):1080–87. https://doi.org/10.2135/cropsci1998.0011183X003800040033x
  15. 15. Britten EJ. Natural and induced parthenocarpy in maize and its relation to hormone production by the developing seed. Am J Bot. 1950;37(5):345–52. https://doi.org/10.1002/j.1537-2197.1950.tb08179.x
  16. 16. Rogers OM. Growth regulator induction of parthenocarpy in maize. Maize genetics cooperation newsletter. 1973.
  17. 17. Marshall DR, Molnàr-Làng M, Ellison FW. Effects of 2,4-D on parthenocarpy and cross-compatibility in wheat. Cereal Res Commun. 1983;11(3/4):213–19.
  18. 18. Beyer EM. A potent inhibitor of ethylene action in plants. Plant Physiol. 1976;58(3):268–71. https://doi.org/10.1104/pp.58.3.268
  19. 19. Salisbury FB, Ross CW. Plant Physiology. 2nd ed. Belmont: Wadsworth Publishing Company; 1978.
  20. 20. Abeles FB, Morgan PW, Saltveit M. Ethylene in Plant Biology. Academic Press; 2012.
  21. 21. Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, et al. Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM, editors. Advances in haploid production in higher plants [Internet]. Dordrecht: Springer Netherlands; 2009. p. 1–33. https://doi.org/10.1007/978-1-4020-8854-4_1
  22. 22. Wedzony M. Protocol for doubled haploid production in hexaploid triticale (x Triticosecale Wittm.) by crosses with maize. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I, editors. Doubled Haploid Production in Crop Plants: A Manual [Internet]. Dordrecht: Springer Netherlands; 2003. p. 135–40. https://doi.org/10.1007/978-94-017-1293-4_21
  23. 23. Pratap A, Sethi GS, Chaudhary HK. Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in Triticale × Wheat and Triticale × Triticale hybrids. Euphytica. 2006;150(3):339–45. https://doi.org/10.1007/s10681-006-9120-9
  24. 24. Charmet G, Bernard S, Bernard M. Origin of aneuploid plants obtained by anther culture in triticale. Canad J Genet Cytol. 1986;28(3):444–52. https://doi.org/10.1139/g86-067
  25. 25. Pauk J, Puolimatka M, Lökös Tóth K, Monostori T. In vitro androgenesis of triticale in isolated microspore culture. PCTOC. 2000;61(3):221–29. https://doi.org/10.1023/A:1006416116366
  26. 26. Slusarkiewicz-Jarzina A, Ponitka A. Efficient production of spontaneous and induced doubled haploid triticale plants derived from anther culture. Cereal Res Commun. 2003;31:289–96. https://doi.org/10.1007/BF03543356
  27. 27. Oleszczuk S, Sowa S, Zimny J. Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo. Plant Cell Rep. 2004;22(12):885–93. https://doi.org/10.1007/s00299-004-0796-9
  28. 28. Eudes F, Amundsen E. Isolated microspore culture of Canadian 6× triticale cultivars. PCTOC. 2005;82(3):233–41. https://doi.org/10.1007/s11240-005-0867-9
  29. 29. Würschum T, Tucker MR, Reif JC, Maurer HP. Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol. 2012;12(1):109. https://doi.org/10.1186/1471-2229-12-109
  30. 30. Lantos C, Bóna L, Boda K, Pauk J. Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (X Triticosecale Wittmack) for androgenic parameters. Euphytica. 2013;197(1):27–37. https://doi.org/10.1007/s10681-013-1031-y
  31. 31. Stanislawa MR, Mikulski W. Induction of haploids in Triticale [X Triticosecale Witt.] by crossing it with maize [Zea mays]. In: Guedes-Pinto H, Darvey N, Carnide VP, editors. Triticale: Today and tomorrow [Internet]. Dordrecht: Springer Netherlands; 1996. p. 379–82. https://doi.org/10.1007/978-94-009-0329-6_49
  32. 32. Wedzony M. Penetration of maize [Zea mays L.] pollen tube to the Triticale [xTriticosecale Wittm.] embryo sac. Bulletin of the Polish Academy of Sciences Biological Sciences. 1997;45.
  33. 33. O’Donoughue LS, Bennett MD. Durum wheat haploid production using maize wide-crossing. Theor Appl Genet. 1994;89(5):559–66. https://doi.org/10.1007/BF00222448
  34. 34. Sandal SS, Savindra PK, Walia P. Effect of 2, 4-D dosage on haploid embryo induction in bread wheat following wide hybridization with maize. AGRBIO. 2023;28(2):431–36.
  35. 35. Matzk F, Mahn A. Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed. 1994;113(2):125–29. https://doi.org/10.1111/j.1439-0523.1994.tb00714.x
  36. 36. Sozinov A, Lukjanjuk S, Ignatova S. Anther cultivation and induction of haploid plants in Triticale. Z Pflanzenzuecht. 1981;86(4):272–85.
  37. 37. Schumann G. In vitro production of haploids in triticale. In: Bajaj YPS, editor. Wheat [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1990. p. 382–402. https://doi.org/10.1007/978-3-662-10933-5_19

Downloads

Download data is not yet available.