Nanomaterial based drought mitigation in crops is through antioxidant defense system
DOI:
https://doi.org/10.14719/pst.5915Keywords:
antioxidant machinery, drought stress, nanoparticles, reactive oxygen speciesAbstract
Drought stress significantly impacts crop productivity by affecting the growth and development of plants. Studies have shown that drought stress induces oxidative damage, and the use of antioxidant molecules or nanoparticle (NPs) possessing antioxidant properties may decrease the negative effects of oxidative stress. So far, antioxidants like ascorbic acid, glutathione, proline, and glycine betaine have been studied in detail, but there is limited information available on the effect of NPs in decreasing drought induced oxidative damage. When plants are subjected to drought stress conditions, their ability to scavenge reactive oxygen species (ROS) decreases leading to an increase in ROS that can damage membranes, proteins, and lipids. Nonenzymatic antioxidants, such as tocopherols, ascorbate, glutathione, phenols, and carotenoids, along with enzymatic antioxidants such as superoxide dismutase, catalase, and ascorbate peroxidise, can strengthen the plant defense against ROS. Nanoparticles possessing antioxidant properties can mimic antioxidant enzymes, activate, and alter gene expression levels, leading to reduced ROS levels because of their increased surface area and presence of free electrons on their surface. This review discusses the effects of drought stress on crops, the synthesis, and unique properties of NPs, and the various traits improved by NPs possessing antioxidant properties to mitigate drought stress in plants.
Downloads
References
Guhathakurta P, Menon P, Inkane PM, Krishnan U, Sable ST. Trends and variability of meteorological drought over the districts of India using standardized precipitation index. J Earth Syst Sci. 2017;126:1-18. https://doi:10.1007/s12040-017-0896-x
World population projected to reach 9.8 billion in 2050 and 11.2 billion in 2100. The United Nations: Department of social and economic affairs; 2017. Available from: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100
Feeding the world in 2050. Food and Agriculture Organization of the United Nations: Natural Resources Management and Environment Department; 2009. Available from: https://www.fao.org/4/k6021e/k6021e.pdf
Okçu G, Kaya MD, Atak M. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For. 2005;29(4):237-42. https://journals.tubitak.gov.tr/agriculture/vol29/iss4/2
Yildirim, Kaya, Z. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol Biochem. 2017;115:183-99. https://doi:10.1016/j.plaphy.2017.03.020
Santos R, Carvalho M, Rosa E, Carnide V, Castro I. Root and agro-morphological traits performance in cowpea under drought stress. Agron. 2020;10(10):1604. https://doi:10.3390/agronomy10101604
Nonami H. Plant water relations and control of cell elongation at low water potentials. J Plant Res. 1998;111:373-82. https://doi:10.1007/BF02507801
Singh SK, Reddy KR. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J Photochem Photobiol B. 2011;105(1):40-50. https://doi:10.1016/j.jphotobiol.2011.07.001
Costa DL, Vedove DG, Gianquinto G, Giovanardi R, Peressotti A. Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress. Potato Res. 1997;40:19-34. https://doi.org/10.1007/BF02407559
Stoyanov ZLATEV. Effects of water stress on leaf water relations of young bean plants. J Cent Eur Agric. 2005;6(1):5-14.
Ryan MG. Tree responses to drought. Tree Physiol. 2011;31(3):237-39. https://doi:10.1093/treephys/tpr022
Santos VAHFD, Ferreira MJ, Rodrigues JVFC, Garcia MN, Ceron JVB, Nelson BW, et al. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central amazon forest. Global Change Biol. 2018;24(9):4266-79. https://doi:10.1111/gcb.14293
Impa SM, Nadaradjan S, Jagadish SVK. Drought stress induced reactive oxygen species and anti-oxidants in plants. Abiotic Stress Responses Plants: Metab, Productivity, Sustainability. 2012;131-47. https://doi:10.1007/978-1-4614-0634-1_7
Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants. Nanotechnology and plant sciences: Nanoparticles and their impact on plants; 2015. p. 1-17. https://doi.org/10.1007/978-3-319-14502-0_1
Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Biol. 1998;49(1):249-79. https://doi:10.1146/annurev.arplant.49.1.249
Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot. 2003;91(2):179-94. https://doi:10.1093/aob/mcf118
Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants. 2019;8(9):384. https://doi:10.3390/antiox8090384
Bolda VV. Studies on elemental composition and antioxidant capacity in callus cultures and native plants of Vaccinium myrtillus L. local populations. Acta Biol Szeged. 2011; 55(2):255-59.
Hung KT, Kao CH. Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol. 2004;161(12):1347-57. https://doi:10.1016/j.jplph.2004.05.011
Dar NA, Amin I, Wani W, Wani SA, Shikari AB, Wani SH, et al. Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene. 2017;11:106-11. https://doi:10.1016/j.plgene.2017.07.003
Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun. 2008;375(1):80-85. https://doi:10.1016/j.bbrc.2008.07.128
Ali S, Hayat K, Iqbal A, Xie L. Implications of abscisic acid in the drought stress tolerance of plants. Agron. 2020;10(9):1323. https://doi:10.3390/agronomy10091323
Mahrokh A, Nabipour M, Roshanfekr HA, Choukan R. Response of some grain maize physiological parameters to drought stress and application of auxin and cytokinin hormones. Environ Stresses Crop Sci. 2019;12(1):1-15. https://doi:10.22077/escs.2018.1116.1229
Eisvand HR, Tavakkol-Afshari R, Sharifzadeh F, Maddah Arefi H, Hejazi HSM. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol. 2010;38(2):280-97. https://doi:10.15258/sst.2010.38.2.02
Al Mahmud J, Biswas PK, Nahar K, Fujita M, Hasanuzzaman M. Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica. 2019;72(2). https://doi:10.5586/aa.1776
Roghayyeh S, Saeede R, Omid A, Mohammad S. The effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L.) seeds under drought stress. J Stress Physiol Biochem. 2014;10(1):5-13.
Raza MAS, Zaheer MS, Saleem MF, Khan IH, Ahmad S, Iqbal R. Drought ameliorating effect of exogenous applied cytokinin in wheat. Pak J Agric Sci. 2020;57(3). https://doi:10.21162/PAKJAS/20.8183
Cui M, Lin Y, Zu Y, Efferth T, Li D, Tang Z. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. J Plant Biol. 2015;58:193-201. https://doi:10.1007/s12374-014-0302-z
Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, et al. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J. 2014;12(6):685-93. https://doi:10.1111/pbi.12172
Aslam M, Zamir MSI, Afzal I, Yaseen M, Mubeen M, Shoaib A. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomice in Moldova. 2012;2(154). https://repository.iuls.ro/xmlui/handle/20.500.12811/1807
El-Beltagi HS, Ismail SA, Ibrahim NM, Shehata WF, Alkhateeb AA, Ghazzawy HS, et al. Unravelling the effect of triacontanol in combating drought stress by improving growth, productivity and physiological performance in Strawberry plants. Plants. 2022;11(15):1913. https://doi:10.3390/plants11151913
Wang X, Zhao W, Wei X, Song S, Dong S. The application potential of mepiquat chloride in soybean: Improvement of yield characteristics and drought resistance. BMC Plant Biol. 2024;24(1):1-15. https://doi:10.1186/s12870-024-05028-1
Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T. Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci. 2010;196(5):336-45. https://doi:10.1111/j.1439-037X.2010.00422.x
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6):2064-10. https://doi:10.1021/cr068445e
Siddiqi KS, Husen A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett. 2017;12:1-18. https://doi:10.1186/s11671-017-1861-y
Xing T, Sunarso J, Yang W, Yin Y, Glushenkov AM, Li LH, et al. Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale. 2013;5(17):7970-76. https://doi:10.1039/C3NR02328A
Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015;5(127):105003-37. https://doi:10.1039/C5RA19388E
Daraio C, Jin S. Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for biology and medicine: At the building block level. New York, NY: Springer New York. (BC); 2011. p. 27-44. https://doi.org/10.1007/978-0-387-31296-5_2
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities and low-molecular-weight antioxidants. Arch Toxicol. 2024;1-45. https://doi:10.1007/s00204-024-03696-4
Lushchak O, Zayachkivska A, Vaiserman A. Metallic nanoantioxidants as potential therapeutics for type 2 diabetes: A hypothetical background and translational perspectives. Oxid Med Cell Longev. 2018;(1):3407375. https://doi.org/10.1155/2018/3407375
Kumar H, Bhardwaj K, Nepovimova E, Kuca K, Dhanjal SD, Bhardwaj S, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10(7):1334. https://doi:10.3390/nano10071334
Ashkavand P, Tabari M, Zarafshar M, Tomásková I, Struve D. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Lesne Prace Badawcze. 2015;76(4). https://doi:10.1515-frp-2015-0034
Fatemi H, Pour BE, Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ Pollut. 2020;266:114982. https://doi:10.1016/j.envpol.2020.114982
Ghorbani R, Movafeghi A, Gangeali A, Nabati J. Effects of TiO2 nanoparticles on morphological characteristics of chickpea (Cicer arietinum L.) under drought stress. Environ Stresses Crop Sci. 2021;14(1):85-98. https://doi:10.22077/escs.2020.2485.1654
Ikram M, Raja NI, Javed B, Mashwani ZUR, Hussain M, Hussain M, et al. Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Process Synth. 2020;9(1):706-14. https://doi:10.1515/gps-2020-0067
Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition and grain fortification. Sci Total Environ. 2019;688:926-34. https://doi:10.1016/j.scitotenv.2019.06.392
Aqaei P, Weisany W, Diyanat M, Razmi J, Struik PC. Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. J Plant Nutr. 2020;43(9):1205-16. https://doi:10.1080/01904167.2020.1727508
Zahedi SM, Hosseini MS, Meybodi DHN, Peijnenburg W. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J Sci Food Agric. 2021;101(12):5202-13. https://doi:10.1002/jsfa.11167
Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, et al. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants. 2020;10;9(1):88. https://doi.org/10.3390/plants9010088
Ahmed F, Javed B, Razzaq A, Mashwani ZUR. Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. IET Nanobiotech. 2021;15(1):68-78. https://doi:10.1049/nbt2.12002
Kim JH, Oh Y, Yoon H, Hwang I, Chang YS. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol. 2015;49(2):1113-19. https://doi:10.1021/es504375t
Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants. 2021;10(2):421. https://doi:10.3390/plants10020421
Ayyaz A, Fang R, Ma J, Hannan F, Huang Q, Sun Y, et al. Calcium nanoparticles (Ca-NPs) improve drought stress tolerance in Brassica napus by modulating the photosystem II, nutrient acquisition and antioxidant performance. Nano Impact. 2022;28:100423. https://doi:10.1016/j.impact.2022.100423
Boora R, Rani N, Kumari S, Goel S, Arya A, Grewal S. Exploring the role of green synthesized cerium nanoparticles in enhancing wheat's drought tolerance: A comprehensive study of biochemical parameters and gene expression. Cereal Res Commun. 2024;1-12. https://doi.org/10.1007/s42976-024-00493-8
Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega. 2018;3(10):14406-16. https://doi:10.1021/acsomega.8b01894
Faisal M, Faizan M, Alatar AA. Metallic allies in drought resilience: Unveiling the influence of silver and zinc oxide nanoparticles on enhancing tomato (Solanum lycopersicum) resistance through oxidative stress regulation. Plant Physiol Biochem. 2024;212:108722. https://doi:10.1016/j.plaphy.2024.108722
Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett. 2017;12:1-6. https://doi:10.1186/s11671-017-1839-9
Ghorbanpour M, Mohammadi H, Kariman K. Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano. 2020;7(2):443-61. https://doi:10.1039/C9EN00973F
Karvar M, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ. Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiol Plant. 2022;44(2):14. https://doi:10.1007/s11738-021-03349-4
Zeeshan M, Wang X, Salam A, Wu H, Li S, Zhu S, et al. Selenium nanoparticles boost the drought stress response of soybean by enhancing pigment accumulation, oxidative stress management and ultrastructural integrity. Agron. 2024;14(7):1372. https://doi:10.3390/agronomy14071372
Omar AA, Heikal YM, Zayed EM, Shamseldin SA, Salama YE, Amer KE, et al. Conferring of drought and heat stress tolerance in wheat (Triticum aestivum L.) genotypes and their response to selenium nanoparticles application. Nanomaterials. 2023;13(6):998. https://doi:10.3390/nano13060998
Behboudi F, Sarvestani TZ, Kassaee MZ, Modares Sanavi SAM, Sorooshzadeh A. Improving growth and yield of wheat under drought stress via application of SiO2 nanoparticles. J Agric Sci Technol. 2018a;20(7):1479-92.
Behboudi F, Sarvestani TZ, Kassaee MZ, Sanavi SAM, Sorooshzadeh A, Ahmadi SB. Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. J Water Environ Nanotechnol. 2018b;3(1):22-39. https://doi:10.22090/jwent.2018.01.003
Sharf-Eldin AA, Alwutayd KM, El-Yazied AA, El-Beltagi HS, Alharbi BM, Eisa MA, et al. Response of maize seedlings to silicon dioxide nanoparticles (SiO2NPs) under drought stress. Plants. 2023;12(14):2592. https://doi:10.3390/plants12142592
Linh TM, Mai NC, Hoe PT, Lien LQ, Ban NK, Hien LTT, et al. Metal-based nanoparticles enhance drought tolerance in soybean. J Nanomater. 2020;1-13. https://doi:10.1155/2020/4056563
Pandya P, Kumar S, Sakure AA, Rafaliya R, Patil GB. Zinc oxide nanopriming elevates wheat drought tolerance by inducing stress-responsive genes and physio-biochemical changes. Curr Plant Biol. 2023;35:100292. https://doi:10.1016/j.cpb.2023.100292
Shinde NA, Kawar PG, Dalvi SG. Chitosan-based nanoconjugates: A promising solution for enhancing crop drought-stress resilience and sustainable yield in the face of climate change. Plant Nano Biol. 2024;100059. https://doi:10.1016/j.plana.2024.100059
Ali EF, El-Shehawi AM, Ibrahim OHM, Abdul-Hafeez EY, Moussa MM, Hassan FAS. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem. 2021;161:166-75. https://doi:10.1016/j.plaphy.2021.02.008

Downloads
Published
Versions
- 22-02-2025 (2)
- 09-02-2025 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 J Logeshwaran, A Senthil, K Anitha, P S Moorthy, R Raghu, R Karthikeyan, M Djanaguiraman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).