Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. sp4 (2024): Recent Advances in Agriculture by Young Minds - I

Evaluation of anti - diabetic activity of palmyrah (palm jaggery and palm honey) (Borassus flabellifer L.) against streptozotocin - nicotinamide induced diabetic wistar rats

DOI
https://doi.org/10.14719/pst.5936
Submitted
18 October 2024
Published
28-12-2024 — Updated on 17-08-2025
Versions

Abstract

Value-added products derived from palmyrah (Borassus flabellifer L.), such as palm jaggery and palm honey, serve as alternative source of table sugar with a low glycemic index. During 2022-23, an experiment was to evaluate their anti-diabetic activity. The efficacy of palm jaggery and palm honey was assessed in diabetic rats at a dose of 200 mg/kg and their effects were compared to those of oral glimepiride in a 28-days randomized control study. Biochemical estimations and histopathological analyses revealed that palm jaggery and palm honey possess anti
-diabetic, antioxidant, anti-hyperglycemic and insulinogenic properties. These palmyrah products significantly enhanced insulin secretion by pancreatic β-cells, leading to a marked reduction in blood glucose levels, serum uric acid, creatinine and lipid peroxidise activity. Furthermore, the restoration of normal metabolic pathways reduced oxidative stress-induced mechanisms in diabetic rats treated with palmyrah jaggery and honey. Hence, palm products could be used as an adjuvant in the treatment of diabetes mellitus.

References

  1. 1. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21(5):1835. https://doi:10.3390/ijms21051835
  2. 2. Acharjee S, Ghosh B, Al-Dhubiab BE, Nair AB. Understanding type 1 diabetes: Etiology and models can. J Diabetes. 2013;37:269-76. https://doi.org/10.1016/j.jcjd.2013.05.001
  3. 3. Chawla A, Chawla R, Jaggi S. Microvascular and macrovascular complications in diabetes mellitus: Distinct or continuum ? Indian J Endocrinol Metab. 2016,20:546-51. https://doi:10.4103/2230-8210.183480
  4. 4. Szkudelski T. Streptozotocin-nicotinamide induced diabetes in characteristics of the experimental model. Exp Biol Med. 2012;237:481-90. https://doi:10.1258/ebm.2012.011372
  5. 5. Alenzi FQ. Effect of nicotinamide on experimental induced diabetes. Iran J Allergy Asthma Immunol. 2009;8:11-18. https://pubmed.ncbi.nlm.nih.gov/19279354/
  6. 6. Shabnam Ain, Gaurav Mishra, Babita Kumar, Qurratul Ain, Raj Kumar Garg. Anti-diabetic potential of developed solid lipid nanoparticles loaded with quercetin: In vitro and in silico studies. Ann Phytomed. 2022;11(2):732-42.
  7. 7. Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: A review. J Altern Complement Med. 2004;10(2):369-78.
  8. 8. Putta Swetha, Malarkodi Velraj. Type 2 diabetes mellitus: Current prevalence and future forecast. Annals of Phytomedicine. 2023;12(2):141-48. http://dx.doi.org/10.54085/ap.2023.12.2.16
  9. 9. Sethumathi PP, Manjuparkavi K, Lalitha V, Sivakumar T, Menaka M, Jayanthi A, Ashok Kumar B. Evaluation of in vitro antioxidant and antimicrobial activity of polyherbal formulation of Thirikadugu chooranam and Parangipattai chooranam. Ann Phytomed. 2021;10(2):169-74. http://dx.doi.org/10.21276/ap.2021.10.2.23
  10. 10. Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complementary Med. 2018;8:361-76. https://doi:10.1016/j.jtcme.2017.08.012
  11. 11. Sharma A, Gupta S, Chauhan S, Nair A, Sharma P. Astilbin: A promising unexplored compound with multidimensional medicinal and health benefits. Pharmacol Res. 2020;158. https://doi.org/10.1016/j.phrs.2020.104894
  12. 12. Sohel Bin Azad, Pravej Ansari, Shofiul Azam, Saad Mosharaff, Mohammad Ibtida-Bin Shahid, Mahmudul Hasan, Hannan JMA. Anti -hyperglycaemic activity of Moringa oleifera partly mediated by carbohydrase inhibition and glucose fibre binding. Bioscience Reporter. 2017;37(3):BSR20170059. https://doi:10.1042/BSR2017005
  13. 13. Mac Donald IC, Ragan DM, Schmidt EE, Groom AC. Kinetics of red blood cells passage through interendothelial slits into venous sinuses in rat spleen, analyzed by in vivo microscopy. Elsevier. 1987;33(1):118-34.
  14. 14. Guna GA. Medicinal flora of Kashmir valley [Ph.D. thesis], University of Kashmir, Srinagar, India; 2006. https://www.botanyjournals.com/assets/archives/2020/vol5issue6/5-5-96-799.pdf
  15. 15. Hemalatha G, Sankaralingam A, Ponnuswamy V. Analysis of the nutrient content of neerah for elite palmyrah genotypes. S I Hort. 2004;52(1/6):400-02.
  16. 16. Ramachandran VS, Swarupanandan K, Renuka C. A traditional irrigation system using palmyrah palm (Borassus flabellifer) in Kerala, India. Palms. 2004;48:175-81. https://www.amrita.edu/publication/a-traditional-irrigation-system-using-palmyra-palmborassus-flabellifer-in-kerala-india/
  17. 17. Arulraj S, Augustine BJ. Under-utilized palms. In: Peter KV, editor. Underutilized and underexploited horticultural crops. New India Publishing Agency; 2008. 3:415-29.
  18. 18. Vengaiah PC, Murthy GN, Prasad KR, Kumari KU. Post-harvest technology of palmyra (Borassus flabellifer L.) present practices and scope. Int Conference on Food Processing by Omics Group, India; 2012. https://scholar.google.co.in/citations?user=2IROVR0AAAAJ&hl=en
  19. 19. Ankita Aman, Rajni Rajan, Supama Sinha. The palmyrah palm (Borassus flabellifer L.): Overview of biology, uses and cultivation. Biomol Rep. 2018. https://www.researchgate.net/publication/328939419
  20. 20. Saravanya KS, Kavitha S. A study on properties of palmyrah sprouts. Int J Curt Res. 2017;9:54299-301. https://www.journalcra.com/sites/default/files/issue-pdf/23682.pdf
  21. 21. Sankaralingam A, Hemalatha G, Ali AM. A treatise in Palmyrah. Book. 1999. https://books.google.co.in/books/about/ATreatiseon Palmyrah.html?id=Sj5aHQAACAAJ&redir esc=y
  22. 22. Pathberiya LG, Jansz ER. Studies on the carotenoids and in vitro antioxidant capacity of Palmyrah fruit pulp from Mannar. J Natl Sci Found Sri Lanka. 2010;33(4):269-72. https://doi:10.4038/jnsfsr.v33i4.2117
  23. 23. Renuka K, Roshana Devi V, Subramanian SP. Phytochemical screening and evaluation of in vitro antioxidant potential of immature palmyrah palm (Borassus flabellifer Linn.) fruits. Int J Pharm Sci. 2018;10(8):77-83. https://doi.org/10.22159/ijpps.2018v10i8.27162
  24. 24. Renuka K, Sharmila C, Subramanian SP. Evaluation of antimicrobial activity of immature palmyrah palm (Borassus flabellifer Linn.) fruits. Int J Pharm Sci Rev Res. 2019;55(1):50-57. https://globalresearchonline.net/journalcontents/v55-1/10.pdf
  25. 25. Uluwaduge I, Punya AA, Senadheera SN, Jansz ER. Studies on the natural hydrophobic blinder of flabelliferins and their effect on some bioactivities. J Natl Sci Found Sri Lanka. 2005;33:187-91.
  26. 26. Uluwaduge I, Thabrew MI, Janz ER. The effect of flabelliferins of palmyrah fruit pulp on intestinal glucose uptake in mice. J Natl Sci Found Sri Lanka. 2006;34:37-41. https//:doi.org/10.4038/jnsfsr.v34i1.2074
  27. 27. Deutschlander MS, Lall N, Van de Venter M, Dewanjee S. The hypoglycaemic activity of Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark evaluated in a streptozotocin-nicotinamide induced type 2 diabetes rat model. South African J Bot. 2012;80:9 -12. https://doi.org/10.1016/j.sajb.2012.02.006
  28. 28. Drabkin DL, Austin JM. Spectrophotometric constants for common haemoglobin derivatives in human dog and rabbit blood. J Biol Chem. 1932;98:719-33. https://www.scirp.org/reference/referencespapers?referenceid=1807226
  29. 29. Nayak SS, Pattabiraman TN. A new colorimetric method for the estimation of HbA1C. Clin Chim Acta. 1981;109:267-74.
  30. 30. Lowry OH, Rosenbrough NJ, Farr AL. Protein measurement with Folin-phenol reagent. J Biol Chem. 1951;35:1141-45. https://pubmed.ncbi.nlm.nih.gov/14907713/
  31. 31. Selvan VT, Manikandan L, Kumar SGP, Suresh R, Kakoti BB, Gomathi P. Anti-diabetic and antioxidant effects of methanol extract of Artanema sesamoides in streptozotocin induced diabetic animals. Int J Appl Res Nat Prod. 2008;1:25-33. https://www.researchgate.net/publication/43655805
  32. 32. Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi- Samani M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron Physician. 2016;8:1832-42.
  33. 33. Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, et al. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid Based Complement Altern Med. 2014;525340. https://doi:10.1155/2014/525340
  34. 34. Gupta A, Al-Dhubiab BE, Chattopadhyaya I, Nair A, Kumria R, Gupta S. Assessment of pharmacokinetic interaction of spirulina with glitazone in a type 2 diabetes rat model. J Med Food. 2013;16:1095-100. https://doi:10.1089/jmf.2012.2716
  35. 35. Ahangarpour A, Oroojan AA, Khorsandi L, Shabani R, Mojaddami S. Preventive effects of betulinic acid on streptozotocin nicotinamide induced diabetic nephropathy in male mouse. J Nephropathol. 2016;5:128-33.
  36. 36. Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH, Kumar S. Anti-diabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nano-formulation. Int J Nanomed. 2019;14:4383-95.
  37. 37. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β-cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181-88.
  38. 38. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058-70.
  39. 39. Gharib E, Montasser Kouhsari S. Study of the anti-diabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran J Pharm Res. 2019;18:358-68. https://pubmed.ncbi.nlm.nih.gov/31089370/
  40. 40. Punit RB, Kajal BP, Urvesh DP, Chirag MM, Harshad BP, Bhavesh BJ. Anti-diabetic, antioxidant and anti-inflammatory activity of medicinal plants collected from nearby area of Junagadh, Gujarat. Ann of Phytomed. 2019;8(2):75-84.
  41. 41. Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012;16:S267.
  42. 42. Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax proczunbens (Linn.). BMC Complement Altern Med. 2009;9:48.
  43. 43. Yang S, Wang S, Yang B, Zheng J, Cai Y, Yang Z. Weight loss before a diagnosis of type 2 diabetes mellitus is a risk factor for diabetes complications. Medicine. 2016;95:e5618.
  44. 44. Rines AK, Sharabi K, Tavares CD, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016;15:786-804. https:/doi:10.1038/nrd.2016.151
  45. 45. Kondeti VK, Badri KR, Maddirala DR, Thur SKM, Fatima SS, Kasetti RB. Effect of Pterocorpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin induced diabetic rats. Food Chem Toxicol. 2010;48:1281-87.
  46. 46. Teshome G, Ambachew S, Fasil A, Abebe M. Prevalence of liver function test abnormality and associated factors in type 2 diabetes mellitus: A comparative cross- sectional study. EJIFCC. 2019;30:303-16.
  47. 47. Qian K, Zhong S, Xie K, Yu D, Yang R, Gong DW. Hepatic ALT isoenzymes elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes Metab Res Rev. 2015;31:562-71.
  48. 48. Yu SM, Bonventre JV. Acute kidney injury and progression of diabetic kidney disease. Adv Chronic Kidney Dis. 2018;25:166-80. https://doi:10.1053/j.ackd.2017.12
  49. 49. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev. 2019;308:56-57. https://doi:10.1155/2019/3085756
  50. 50. Ananthan R, Baskar C, Narmatha Bai V, Pari L, Latha M, Ramkumar KM. Anti-diabetic effect of Gymnema montanum leaves: Effect on lipid peroxidation induced oxidative stress in experimental diabetes. Pharmacol Res. 2003;48:551-56.
  51. 51. Oche O, Sani I, Chilaka NG, Samuel NU, Samuel A. Pancreatic islet regeneration and some liver biochemical parameters of leaf extracts of Vitex doniana in normal and streptozotocin-induced diabetic albino rats. Asian Pac J Trop Biomed. 2014;4:124-30. https://doi:10.1016/S2221-1691(14)60220-3
  52. 52. Sri Bhuvaneswari S, Prabha TS, Sameema Begum, Kammalakannan K, Sivakumar T. Assessment of biological activity of ethanolic leaf extracts of Zaleya decandra L. Annals of Phytomedicine. 2023;12(1):795-800. http://dx.doi.org/10.54085/ap.2023.12.1.96

Downloads

Download data is not yet available.