Advancements in sunflower genomics: Navigating the Biotech revolution for crop improvement

Authors

DOI:

https://doi.org/10.14719/pst.5938

Keywords:

genetic diversity, genomics, omics, QTL, sunflower

Abstract

Sunflowers are a staple crop in global agriculture, with significant production in temperate and semi-arid climates. The cultivated sunflower is notable for its diverse chromosomal configurations and its historical cultivation by Native American tribes. Recent advancements in sunflower genomics have revealed a complex and extensive genome, offering insights into traits critical for breeding, such as oil content, disease resistance, and environmental resilience. Genomic studies have also illuminated the pathways governing drought tolerance and fatty acid composition, improving the breeding of sunflowers tailored to specific agronomic and nutritional needs. Identifying genes associated with disease resistance, particularly against the parasitic weed broomrape, highlights the potential of genomics in safeguarding crop productivity. Overall, the article emphasizes the importance of sunflower genomics in shaping the future of crop improvement and agriculture.

Downloads

Download data is not yet available.

References

Adeleke BS, Babalola OO. Oilseed crop sunflower (Helianthus annuus) as a source of food: nutritional and health benefits. Food Sci Nutr. 2020;8(9):4666-84. https://doi.org/10.1002/fsn3.1783

Jockovic M, Cvejic S, Jocic S, Marjanovi?-JeromelA A, Miladinovi? D, Jockovi? B. Evaluation of sunflower hybrids in multi-environment trial (Met). Turk J Field Crops. 2019;24(2); 202-210. https://doi.org/10.17557/tjfc.645276

Sunflower oil market size, share and COVID-19 impact analysis, by type (high-oleic, mid-oleic, and linoleic), end-users (household/retail, foodservice/HORECA and industrial) and regional forecast,2021-2028. Fortune Business Insights. 2024; 1-160. https://www.fortunebusinessinsights.com/industry-reports/sunflower-oil-market-101480

Global sunflower market size by product, by application, by geographic scope and forecast. Verified Market Research. 2024;1-202. https://www.verifiedmarketresearch.com/product/sunflower-market

Kosar F, Alshallash KS, Akram NA, Sadiq M, Ashraf M, Alkhalifah DHM, et al. Trehalose-induced regulations in nutrient status and secondary metabolites of drought-stressed sunflower (Helianthus annuus L.) plants. Plants. 2022;11(20):2780. https://doi.org/10.3390/plants11202780

Harsányi E, Bashir B, Alsilibe F, Alsafadi K, Alsalman A, Széles A, et al. Impact of agricultural drought on sunflower production across Hungary. Atmosphere (Basel). 2021;12(10):1339. https://doi.org/10.3390/atmos12101339

Cveji? S, Radanovi? A, Dedi? B, Jockovi? M, Joci? S, Miladinovi? D. Genetic and genomic tools in sunflower breeding for broomrape resistance. Genes (Basel). 2020;11(2):152. https://doi.org/10.3390/genes11020152

Martín-Sanz A, Malek J, Fernández-Martínez JM, Pérez-Vich B, Velasco L. Increased virulence in sunflower broomrape (Orobanche cumana Wallr.) populations from southern Spain is associated with greater genetic diversity. Front Plant Sci. 2016;7(589).

Fernández-Martínez B, Velasco. Sunflower broomrape (Orobanche cumana Wallr.). In:Sunflower. Urbana, IL, USA: AOCS Press. 2015;129-55.

Barbosa H de S, Quirino de Souza DL, Ferreira Koolen HH, Gozzo FC, Zezzi Arruda MA. Sample preparation focusing on plant proteomics: extraction, evaluation and identification of proteins from sunflower seeds. Anal Methods. 2013;5(1):116-23. https://doi.org/10.1039/C2AY25503K

Gulya TJ, Mathew F, Harveson R, Markell S, Block C. Diseases of sunflower. In: Handbook of florist’s crop disease; 2018. p. 787-837

Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, et al. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. The Plant Journal. 2012;72(1):142-53. https://doi.org/10.1111/j.1365-313X.2012.05072.x

de R, Vázquez N. Origin of the argentine sunflower varieties. Helia. 2003;26(38):127-136. https://doi.org/10.2298/HEL0338127d

Park B, Burke JM. Phylogeography and the evolutionary history of sunflower (Helianthus annuus L.): wild diversity and the dynamics of domestication. Genes (Basel). 2020;11(3):266. https://doi.org/10.3390/genes11030266

Blackman BK, Scascitelli M, Kane NC, Luton HH, Rasmussen DA, Bye RA, et al. Sunflower domestication alleles support single domestication center in eastern North America. Proc Natl Acad Sci. 2011;108(34):14360-65. https://doi.org/10.1073/pnas.1104853108

Mota L, Torices R, Loureiro J. The evolution of haploid chromosome numbers in the sunflower Family. Genome Biol Evol. 2016;8(11):3516-28. https://doi.org/10.1093/gbe/evw251

Church SA, Spaulding EJ. Gene expression in a wild autopolyploid sunflower series. J Heredity. 2009;100(4):491-95. https://doi.org/10.1093/jhered/esp008

Hossein ZT, Kamil H, Mehdi G, Mehdi G. Assessment of genetic diversity among sunflower genotypes using microsatellite markers. Mol Biol Res Comm. 2018;7(3):143-52.

Marzougui, Sung JS, Choi YM, Lee MC. Assessment of genetic diversity and population structure on kenyan sunflower (Helianthus annus L.) breeding lines by SSR markers. Kor J Plant Resources. 2019;32(3):244-53.

Komuraiah K, Reddy SS, Ranganatha ARG, Ganesh M. Genetic divergence in the inbred lines of sunflower, Helianthus annuus L. J Oilseeds Res. 200422;21(1):154-55.

Reddy AV, Reddy RN, Nagaraj G. Genetic divergence for seed yield and its component traits in sunflower, Helianthus annuus L. germplasm accessions. J Oilseeds Res. 2005;22(2):313-16.

Kane NC, Gill N, King MG, Bowers JE, Berges H, Gouzy J, et al. Progress towards a reference genome for sunflower. Botany. 2011;89(7):429-37. https://doi.org/10.1139/b11-032

Baack EJ, Whitney KD, Rieseberg LH. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol. 2005;167(2):623-30. https://doi.org/10.1111/j.1469-8137.2005.01433.x

Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, et al. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell. 200831;20(11):2931-45. https://doi.org/10.1105/tpc.108.059808

Gedil MA, Wye C, Berry S, Segers B, Peleman J, Jones R, et al. An integrated restriction fragment length polymorphism - amplified fragment length polymorphism linkage map for cultivated sunflower. Genome. 2001;44(2):213-21. https://doi.org/10.1139/g00-111

Paniego A, Panero JL, Vallès J, Garcia S. Contribution to the genome size knowledge of new world species from the Heliantheae alliance (Asteraceae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 2019;153(4):559-68. https://doi.org/10.1080/11263504.2018.1508088

Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. The sunflower genome provides insights into oil metabolism, flowering and asterid evolution. Nature. 2017;546(7656):148-52. https://doi.org/10.1038/nature22380

Grassa CJ, Ebert DP, Kane NC, Rieseberg LH. Complete mitochondrial genome sequence of sunflower (Helianthus annuus L.). Genome Announc. 2016;4(5). https://doi.org/10.1128/genomeA.00981-16

Renaut S. Genome sequencing: illuminating the sunflower genome. Nat Plants. 2017;3(7):17099. https://doi.org/10.1038/nplants.2017.99

Chernova AI, Gubaev RF, Singh A, Sherbina K, Goryunova SV, Martynova EU, et al. Genotyping and lipid profiling of 601 cultivated sunflower lines reveals novel genetic determinants of oil fatty acid content. BMC Genomics. 2021;22(1):505. https://doi.org/10.1186/s12864-021-07768-y

Neupane S, Andersen EJ, Neupane A, Nepal MP. Genome-wide identification of NBS-encoding resistance genes in sunflower (Helianthus annuus L.). Genes (Basel). 2018;9(8):384. https://doi.org/10.3390/genes9080384

Liu A, Liu C, Lei H, Wang Z, Zhang M, Yan X, et al. Phylogenetic analysis and transcriptional profiling of WRKY genes in sunflower (Helianthus annuus L.): genetic diversity and their responses to different biotic and abiotic stresses. Ind Crops Prod.;148:112268. https://doi.org/10.1016/j.indcrop.2020.112268

Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, et al. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol. 2008;66(6):619-36. https://doi.org/10.1007/s11103-008-9293-9

Caballero A, García-Pereira M, Quesada H. Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species. BMC Genomics. 2013;14(1):528. https://doi.org/10.1186/1471-2164-14-528

Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ. Simple sequence repeats map of the sunflower genome. Theor Appl Genet. 2002;105(8):1124-36. https://doi.org/10.1007/s00122-002-0989-y

Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, et al. Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci. 2007;57(4):321-29. https://doi.org/10.1270/jsbbs.57.321

Dimitrijevic A, Horn R. Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci. 2018;8. https://doi.org/10.3389/fpls.2017.02238

Bock DG, Kantar MB, Rieseberg LH. Population genomics of speciation and adaptation in sunflowers; 2020.

Paniego N, Echaide M, Muñoz M, Fernández L, Torales S, Faccio P, et al. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome. 2002;45(1):34-43. https://doi.org/10.1139/g01-120

Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, et al. SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet. 2008;117(7):1021-29. https://doi.org/10.1007/s00122-008-0841-0

Talukder ZI, Seiler GJ, Song Q, Ma G, Qi L. SNP discovery and QTL mapping of sclerotinia basal stalk rot resistance in sunflower using genotyping?by?sequencing. Plant Genome. 2016;9(3). https://doi.org/10.3835/plantgenome2016.03.0035

Ebrahimi A, Maury P, Berger M, Calmon A, Grieu P, Sarrafi A. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower. Genome. 2009;52(5):419-30. https://doi.org/10.1139/G09-020

Shi H, Wu Y, Yi L, Hu H, Su F, Wang Y, et al. Analysis of QTL mapping for germination and seedling response to drought stress in sunflower (Helianthus annuus L.). PeerJ. 2023;11:e15275. https://doi.org/10.7717/peerj.15275

Chaudhary A, Chaudhary S. Quality improvement in plants through induced mutations. In: Mutagenesis: exploring genetic diversity of crops. Brill Wageningen Academic; 2014;p. 233-51. https://doi.org/10.3920/9789086867967_013

Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, et al. Mutation discovery for crop improvement. J Exp Bot. 2009;60(10):2817-25. https://doi.org/10.1093/jxb/erp189

Ahloowalia BS, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135(2):187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

Uranga M, Daròs J. Tools and targets: the dual role of plant viruses in CRISPR–Cas genome editing. Plant Genome. 2023;16(2). https://doi.org/10.1002/tpg2.20220

Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated breeding for Helianthus annuus (sunflower) through doubled haploidy: an insight on past and future prospects in the era of genome editing. Plants. 2023;12(3):485. https://doi.org/10.3390/plants12030485

Kim SG. The way to true plant genome editing. Nat Plants. 2020;6(7):736-37. https://doi.org/10.1038/s41477-020-0723-2

Talukder ZI, Ma G, Hulke BS, Jan CC, Qi L. Linkage mapping and genome-wide association studies of the Rf gene cluster in sunflower (Helianthus annuus L.) and their distribution in world sunflower collections. Front Genet. 2019;10. https://doi.org/10.3389/fgene.2019.00216

Livaja M, Wang Y, Wieckhorst S, Haseneyer G, Seidel M, Hahn V, et al. BSTA: a targeted approach combines bulked segregant analysis with next- generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower. BMC Genomics. 2013;14(1):628. https://doi.org/10.1186/1471-2164-14-628

Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011;43(10):956-63. https://doi.org/10.1038/ng.911

Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, et al. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics. 2009;10(1):547. https://doi.org/10.1186/1471-2164-10-547

Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275-81. https://doi.org/10.1038/ng.475

Wenger JW, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 2010;6(5):e1000942. https://doi.org/10.1371/journal.pgen.1000942

Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol. 2012;12(1):14. https://doi.org/10.1186/1471-2229-12-14

Drown MK, Crawford DL, Oleksiak MF. Transcriptomic analysis provides insights into molecular mechanisms of thermal physiology. BMC Genomics. 2022;23(1):421. https://doi.org/10.1186/s12864-022-08653-y

Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current achievements and applications of transcriptomics in personalized cancer medicine. Int J Mol Sci. 2021;22(3):1422. https://doi.org/10.3390/ijms22031422

Dong Z, Chen Y. Transcriptomics: advances and approaches. Sci China Life Sci. 2013;56(10):960-67. https://doi.org/10.1007/s11427-013-4557-2

Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):e1005457. https://doi.org/10.1371/journal.pcbi.1005457

Terzi? S, Boniface MC, Marek L, Alvarez D, Baumann K, Gavrilova V, et al. Gene banks for wild and cultivated sunflower genetic resources. OCL. 2020;27:9. https://doi.org/10.1051/ocl/2020004

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci. 2005;102(39):13950-55. https://doi.org/10.1073/pnas.0506758102

Tang S, Kishore VK, Knapp SJ. PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet. 2003;107(1):6-19. https://doi.org/10.1007/s00122-003-1233-0

Fernandez O, Urrutia M, Berton T, Bernillon S, Deborde C, Jacob D, et al. Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics. 2019;15(4):56. https://doi.org/10.1007/s11306-019-1515-4

Moschen S, Di Rienzo JA, Higgins J, Tohge T, Watanabe M, González S, et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol Biol. 2017;94(4-5):549-64. https://doi.org/10.1007/s11103-017-0625-5

Martínez-Noël GMA, Dosio GAA, Puebla AF, Insani EM, Tognetti JA. Sunflower: a potential fructan-bearing crop?. Front Plant Sci. 2015;6. https://doi.org/10.3389/fpls.2015.00798

Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, et al. Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag. 2018;201:152-66.https://doi.org/10.1016/j.agwat.2018.01.028

Natali L, Cossu R, Barghini E, Giordani T, Buti M, Mascagni F, et al. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics. 2013;14(1):686. https://doi.org/10.1186/1471-2164-14-686

Hladni N, Jan CC, Jockovi? M, Cveji? S, Joci? S, Radanovi? A, et al. Sunflower and abiotic stress: genetics and breeding for resistance in the-omics era sunflower abiotic stress breeding. In: Genomic Designing for Abiotic Stress Resistant Oilseed Crops. Cham: Springer International Publishing; 2022;p.101-47.

Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Current Biology. 2014;24(7):R288-94. https://doi.org/10.1016/j.cub.2014.01.056

Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH. Origin of extant domesticated sunflowers in eastern North America. Nature. 2004;430(6996):201-05. https://doi.org/10.1038/nature02710

Nwachukwu BC, Ayangbenro AS, Babalola OO. Comparative study of microbial structure and functional profile of sunflower rhizosphere grown in two fields. BMC Microbiol. 2021;21(1):337. https://doi.org/10.1186/s12866-021-02397-7

Todesco M, Bercovich N, Kim A, Imerovski I, Owens GL, Dorado Ruiz Ó, et al. Genetic basis and dual adaptive role of floral pigmentation in sunflowers. Elife. 202218;11. https://doi.org/10.7554/eLife.72072

Published

29-12-2024

How to Cite

1.
Godara S, Kalaiyarasi R, Sasikala R, Senthivelu M, Sudha M. Advancements in sunflower genomics: Navigating the Biotech revolution for crop improvement. Plant Sci. Today [Internet]. 2024 Dec. 29 [cited 2025 Jan. 4];11(sp4). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/5938

Most read articles by the same author(s)