Impact of Pyraclostrobin (F-500) on Crop Plants

Authors

  • Mansi Kanungo
  • Juhie Joshi

DOI:

https://doi.org/10.14719/pst.2014.1.3.60

Keywords:

biomass, pyraclostrobin, strobilurins, yield

Abstract

Strobilurins, such as pyraclostrobin, belong to a fungicide group with preventative mode of action and are used around the world. Strobilurins inhibit mitochondrial respiration by stopping electron transfer at the quinol oxidation site in the cytochrome-bc1 complex which disrupts energy cycle of the fungus. F-500 (pyraclostrobin) strobilurin, a new generation broad spectrum fungicide has been shown to cause changes in the metabolism of plants resulting in higher biomass and yield. Considering the ever increasing demand for food production with shrinking cultivable area day by day, it is necessary to go for agrochemicals which enhance the growth and development vis-à-vis productivity.

Downloads

Download data is not yet available.

References

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B., 42, 441-451. http://dx.doi.org/10.1080/03601230701316465 PMid:17474024

Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649-662. http://dx.doi.org/10.1002/ps.520 PMid:12146165

Baumer, M., Behn, A., Doleschel, P., Fink, K., & Wybranietz, J. (2001). Notreife durch parasiHire Blattver braunung. Getreide, 7, 92-97.

Bertelsen, J. R., Neergaard, E. D., & Smedegaard-Petersen, V. (2001). Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant Pathology, 50, 190-205. http://dx.doi.org/10.1046/j.1365-3059.2001.00545.x

Brandt, U., Haase, U., Schaegger, H., von Jagow, G. (1993). Species specificity and mechanism of action of strobilurins. Dechema Monographien, 129, 27-38.

Conrath, U., Amoroso, G., Köhle, H., & Sultemeyer, D. F. (2004). Non-invasive online detection of nitric oxide from plants and other organisms by mass spectroscopy. Plant Journal, 38, 1015-1022. PMid:15165192 http://dx.doi.org/10.1111/j.1365-313X.2004.02096.x

Grossmann, K., & Retzlaff, G. (1997). Bioregulatory effects of the fungicidal strobilurin kresoxim methyl in wheat (Triticum aestivum). Pestic Science, 50, 11-20. http://dx.doi.org/10.1002/(SICI)1096-9063(199705)50:1<11::AID-PS556>3.0.CO;2-8

Grossmann, K., Kwaitkowski, J., & Retzlaff, G. (1999). Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin Kresoxin-methyl in wheat (Triticum aestivum). Journal of Plant Physiology, 154, 805-808. http://dx.doi.org/10.1016/S0176-1617(99)80262-4

Habermeyer, J., Gerhard, M., & Zinkernagel, V. (1998). The impact of strobilurins on the plant physiology of wheat. 7th Intl. Conf. Plant Pathol. British Society of Plant Pathology, Edinburgh, UK.

Henry, R. S., Johnson, W. G., & Wise K. A. (2011). The impact of a fungicide and an insecticide on soybean growth, yield, and profitability. Crop Protection, 30, 1629-1634. http://dx.doi.org/10.1016/j.cropro.2011.08.014

Hill, C. B., Bowen, C. R., & Hartman, G. L. (2013). Effect of Fungicide Application and Cultivar on Soybean Green Stem Disorder. Plant Disease, 97, 1212-1220. http://dx.doi.org/10.1094/PDIS-12-12-1191-RE

Häuser-Hahn, I., Baur, P., & Schmitt, W. (2004). Fluoxastrobin (HEC 5725) – biochemistry and chemodynamic behaviour of a new leaf systemic strobilurin fungicide. Pflanzenschutz-Nachrichten Bayer, 57, 437-450.

Kyveryga, P. M., Blackmer, T. M., & Mueller, D. S. (2013). When do foliar pyraclostrobin fungicide applications produce profitable soybean yield responses? Online. Plant Health Progress. http://dx.doi.org/10.1094/PHP-2013-0928-01-RS

Köehle, H., Grossmann, K., Retzlaff, G., Akers, A., & Limburgerhof, G. (1997). Physiological effects of the new fungicide Juwel on yield in cereals. Gesunde Pflanzen, 4, 267–271.

Köhle, H., Grossmann, K., Jabs, T., Gerhard, M., Kaiser, W., Glaab, J., ... & Herms, S. (2003). Physiological effects of the strobilurin fungicide F 500 on plants. In H. W. Dehne, U. Gisi, K. H. Juck, P. E. Russel & H. Lyr (Eds). Modern Fungicides and Antifungal Compounds III, Bonn, Germany: Agroconcept GmbH.

Köhle, H., Grossmann, K., Jabs, T., Gerhard, M., Kaiser, W., Glaab, J., ... & Herms, S. (2002). Physiological effects of the strobilurin fungicide F 500 on plants. H. W. Dehne, U. Gisi, K. H. Juck, P. E. Russel & H. Lyr (Eds). Modern Fungicides and Antifungal Compounds III, Bonn, Germany: Agroconcept GmbH., 61-74.

Larson, R. A. (1997). Naturally occurring antioxidants. Boca Raton, New York: Lewis Publishers, CRC Press LLC.

McCartney, C., Mercer, P. C., Cooke, L. R., & Fraaije, B. A. (2007). Effects of a strobilurin based spray programme on disease control, green leaf area, yield and development of fungicide-resistance in Mycosphaerella graminicola in Northern Ireland. Crop Protection, 26, 1272-1280. http://dx.doi.org/10.1016/j.cropro.2006.10.027

Nelson, K. A., & Meinhardt, C. G. (2011). Foliar Boron and Pyraclostrobin Effects on Corn Yield. Agronomy Journal, 103, 1352-1358. http://dx.doi.org/10.2134/agronj2011.0090

Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production - pests, losses and crop protection in major crops. Crop Protection, 23, 275-285. http://dx.doi.org/10.1016/j.cropro.2003.10.001

Ruske, R. E., Gooding, M. J., & Jones, S. A. (2003). The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remobilization and grain N accumulation in winter wheat cultivars. The Journal of Agricultural Science, 140, 395-407. http://dx.doi.org/10.1017/S0021859603003228

Sauter, H., Ammermann, E., Benoit, R., Brand,S., Gold, R. E., Grammenos, W., ... & Wingert, H. (1995). Mitochondrial respiration as a target for antifungals: lessonsfrom research on strobilurins. In: Antifungal Agents. Discovery and Mode of Action. G. K. Dixon, L. G. Copping, D. W. Hollomon. Oxford: BIOS Scientific Publishers, p. 173-191.

Swoboda, C., & Pedersen, P. (2009). Effect of Fungicide on Soybean Growth and Yield. Agronomy Journal, 101, 352-356. http://dx.doi.org/10.2134/agronj2008.0150

Venancio, W. S., Rodrigues, M., Begliomini, E., & de Souza, N. L. (2003). Physiological effects of strobilurin fungicides on plants. Publ. UEPG Exact Soil Sciences, Agrarian Science & Engineering, 9, 59-68.

Vincelli, P. (2002). QoI (Strobilurin) Fungicides: benefits and risks. The Plant Health Instructor. http://dx.doi.org/10.1094/PHI-I-2002-0809-02

Wu, Y.X., & Tiedemann, A.V. (2001). Physiological Effects of Azoxystrobin and Epoxiconazole on Senescence and the Oxidative Status of Wheat. Pest Biochemistry and Physiology, 71, 1-10. http://dx.doi.org/10.1006/pest.2001.2561

Wu, Y. X., & Tiedemann, A. V. (2002a). Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environmental Pollution, 116, 37-47. http://dx.doi.org/10.1016/S0269-7491(01)00174-9

Wu, Y. X., & Tiedemann, A. V. (2002b). Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley. Phytopathology, 92, 145-155. http://dx.doi.org/10.1094/PHYTO.2002.92.2.145 PMid:18943087.

Downloads

Published

03-09-2014

How to Cite

1.
Kanungo M, Joshi J. Impact of Pyraclostrobin (F-500) on Crop Plants. Plant Sci. Today [Internet]. 2014 Sep. 3 [cited 2024 Dec. 22];1(3):174-8. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/60

Issue

Section

Mini Reviews