Relative toxicity of subspecies of Bacillus thuringiensis kurstaki HD-1 and HD-73 against the larvae of legume pod borer, Maruca vitrata, F. (Lepidoptera: Crambidae)

Authors

DOI:

https://doi.org/10.14719/pst.6035

Keywords:

Bacillus thuringiensis, biopesticides, cry toxins, Maruca vitrata, toxicity

Abstract

The legume pod borer, Maruca vitrata F. (Lepidoptera: Crambidae), is a major insect pest of many edible legumes in various regions of America, Asia and Africa. The larvae cause serious damage to the reproductive parts of cowpea, pigeon pea and beans in India. Promotion and use of biopesticide containing Bacillus thuringiensis (Bt) is viewed as a viable alternative to synthetic pesticides. In this study, field populations of M. vitrata were collected from intensive legume-growing regions of India during years 2023 and 2024. A commercial formulation, Bt sub.sp. kurstaki HD-1 (Delfin®), along with reference strains of Bt sub.sp. kurstaki HD-1 and HD-73 were tested on the larvae of different M. vitrata populations collected across India to evaluate their relative effectiveness. The LC50 values ??estimated for Bt kurstaki HD-1 and Bt kurstaki HD-73 strains and a commercial formulation of Bt kurstaki HD-1 (Delfin®) against different field-collected populations of M. vitrata ranged from 1.097 to 1.829 ppm, 6.228 to 7.236 ppm and 2.894 to 4.930 ppm, respectively. The Bt kurstaki HD-1 strain harbouring multiple crystal proteins (Cry1Aa, Cry1Ab, Cry1Ac, Cry2A, Cry2B) were relatively more toxic to the larvae of M. vitrata than Bt kurstaki HD-73 which harbours a single Cry toxin i.e., Cry1Ac.

Downloads

References

Zahid MA, Islam MM, Begum MR. Determination of economic injury levels of Maruca vitrata in mungbean. J Agric Rural Dev. 2008; 6(1):91-97. http://www.banglajol.info/index.php/jard

Srinivasan R, Tamò M, Malini P. Emergence of Maruca vitrata as a major pest of food legumes and evolution of management practices in Asia and Africa. Annu Rev Entomol. 2021; 66(1):141-61. https://doi.org/10.1146/annurev-ento-021220-084539

Mahalle RM, Taggar GK. Yield loss assessment and establishment of economic threshold level of Maruca vitrata in pigeonpea. J Food Legumes. 2018; 31(1):36-44. https://doi.org/10.59797/journaloffoodlegumes.v31i1.447

Khan S, Uddin MN, Rizwan M, Khan W, Farooq M, Shah AS, et al. Mechanism of insecticide resistance in insects/pests. Pol J Environ Stud. 2020; 29(3). https://doi.org/10.15244/pjoes/108513

Zhu F, Lavine L, O’Neal S, Lavine M, Foss C, Walsh D. Insecticide resistance and management strategies in urban ecosystems. Insects. 2016; 7(1):2. https://doi.org/10.3390/insects7010002

Hernández-Fernández J. Bacillus thuringiensis: a natural tool in insect pest control. In The handbook of microbial bioresources. Wallingford UK: Cabi; 2016. p. 121-39.

Bravo A, Likitvivatanavong S, Gill SS, Soberón M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol. 2011; 41(7):423-31. https://doi.org/10.1016/j.ibmb.2011.02.006

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean D. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998; 62(3):775-806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007; 49(4): 425-35. https://doi.org/10.1016/j.toxicon.2006.11.022

Ahmed RN, Uddin MM, Haque MA, Ahmed KS. Evaluation of microbial pathogens for management of legume pod borer, Maruca vitrata F. in Yard Long Bean Ecosystem. Int J Appl Sci Biotechnol. 2020; 8(2):199-204. https://doi.org/10.3126/ijasbt.v8i2.29589

Dulmage HT, Correa JA, Martinez AJ. Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. J Invertebr Pathol. 1970; 15(1):15-20. https://doi.org/10.1016/0022-2011(70)90093-5

Mohan M, Gujar GT. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop protection. 2003; 22(3): 495-504. https://doi.org/10.1016/S0261-2194(02)00201-6

Finney DJ. Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press;1952.

LeOra SO. Poloplus, a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA; 2003.

Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol.1925; 18(2):265-67.

Motulsky HJ. Prism 5 statistics guide. GraphPad Software. 2007;3 1(1):39-42.

Srinivasan R. Susceptibility of legume pod borer (LPB), Maruca vitrata to ?-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. J Invertebr Pathol. 2008;97(1):79-81. https://doi.org/10.1016/j.jip.2007.06.005.

Mohan M, Gujar GT. Susceptibility pattern and development of resistance in the diamondback moth, Plutella xylostella L, to Bacillus thuringiensis Berl var kurstaki in India. Pest Manag Sci.2000;56(2):189-94. https://doi.org/10.1002/(SICI)1526-4998(200002)56:2<189::AID-PS95>3.0.CO;2-T

Meng F, Wu K, Gao X, Peng Y, Guo Y. Geographic variation in susceptibility of Chilo suppressalis (Lepidoptera: Pyralidae) to Bacillus thuringiensis toxins in China. J Econ Entomol.2003; 96(6):1838-42. https://doi.org/10.1093/jee/96.6.1838

Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev.2016;80(2):329-50. https://doi.org/10.1128/mmbr.00060-15

Yule S, Srinivasan R. Evaluation of bio-pesticides against legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae), in laboratory and field conditions in Thailand. J Asia Pac Entomol. 2013; 16(4):357-60. https://doi.org/10.1016/j.aspen.2013.05.001

Zhou Y, Huang C, Chen Y, Han L, Xie J, Chen X. Sensitivities of fall armyworm (Spodoptera frugiperda) populations in different regions of China to four Bt Proteins. Agronomy.2023; 13(9): 2415. https://doi.org/10.3390/agronomy13092415

Tabashnik BE. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1992 ; 85(5):1551-59. https://doi.org/10.1093/jee/85.5.1551

Kumar P, Kamle M, Borah R, Mahato DK, Sharma B. Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt J Biol Pest Control. 2021; 31(1):95. https://doi.org/10.1186/s41938-021-00440-3

Published

04-02-2025 — Updated on 07-02-2025

Versions

How to Cite

1.
Vijayakumari N, Shanthi M, Anusha N, Murugan M, Paripoorani S, Varanavasiappan S, Jayakanthan M, Gracy RG, Mohan M. Relative toxicity of subspecies of Bacillus thuringiensis kurstaki HD-1 and HD-73 against the larvae of legume pod borer, Maruca vitrata, F. (Lepidoptera: Crambidae). Plant Sci. Today [Internet]. 2025 Feb. 7 [cited 2025 Mar. 30];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6035

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>