Allelopathic inhibition of germination, seedling growth and cell division of selected plant species by Calotropis procera (Ait.) Ait.
DOI:
https://doi.org/10.14719/pst.2020.7.1.606Keywords:
allelopathy, Calotropis procera, aqueous extracts, seedling growthAbstract
Calotropis procera (Ait.) Ait. is perennial medicinal obnoxious shrub growing in Pakistan up to 1500 m altitude. Hot and water aqueous extracts from leaves and young stems of C. procera were used against Pennisetum glaucum (Linn.) R. Br., Setaria italica (Linn.) P. Beauv., Brassica campestris Linn. and Lactuca sativa L. under laboratory condition. It was seen that germination, seedling growth, fresh and dry biomass reduced in concentration dependent manner. It was observed that the allelopathic effects depended upon the tested species, growth parameter measured, soaking duration and concentration of the donor plant material. The C. procera litter incorporated into the growth medium inhibited the test species used. The C. procera extracts from leaves were more inhibitory than stem extracts. The tendency of inhibition was radical growth > germination > plumule growth suggesting radicle growth to be a better measure of allelopathy. Leaf extracts significantly reduced division and size of cells. It is suggested that aqueous extract from C. procera can be further assessed against microbes and weed under laboratory and field condition.
Downloads
References
2. Abdul-Farid I, Magdi El-Syed, Eman M. Allelopathic potential of Calotropis procera and Morettia philaeana. Int J Agric & Biol 2013;15(1):130
3. Akindele PO, Fatunla OA, Ibrahim KA, Afolayan CO. Antibacterial and phytochemical screening of Calotropis procera leaf extracts against vancomycin and methicillin resistant bacteria isolated from wound samples in hospital patients. Jour Complem & Alternative Med Res 2017; 2(1):1-14. https://doi.org/10.9734/JOCAMR/2017/30975
4. Umar S, Shuaib NH, Dangore II, Hassan KY. Evaluation of allelopathic effects of Calotropis procera on sorghum and maize. Standard Sci Res Essays 2014; 2(8):345-49.
5. Shetta ND, Alshahrani TS, Aref IM, Nasser R.A. Allelopathic potential of Calotropis procera and Eucalyptus species on germination and growth of some timber trees. Allelopathy Journal 2017; 40(1):81-94. https://doi.org/10.26651/2017-40-1-1068
6. Hilal-Ul-Zaman, Ahmad S. Antibacterial activity and phytochemical analysis of leaf extracts of Calotropis procera. Acta Scientific Pharmaceu Sci 2017; 1.5 (2017):19-21.
7. Hussain F, Ilahi I. Allelopathic potential of Cenchrus ciliaris L. and Bothriochloa pertusa (L) A. Camus. J Sci & Technol 2009; 33(1&2): 47-55
8. Hussain F. Ilahi I, Malik SA, Dasti AA, Ahmad B. Allelopathic effects of rain leachates and root exudates of Cenchrus ciliaris L and Bothriochloa pertusa (L) A. Camus. Pak J Bot 2011; 43(1): 341-50.
9. Saxena MK. Aqueous leachate of Lantana camara kills water hyacinth. J. Chem. Ecol 2000; 26(10):2435-48. https://doi.org/10.1023/A:1005539230307
10. Ahmad I, Hussain F, Barkatullah, Ahmad B. Phytotoxic potential of Celtis australis L. (Family Ulmaceae) against four crop species. Pak J Bot 2014;46(6):2063-67.
11. Raihan I, Miiyaural R, Baki BB. Fujii Y. Assessment of allelopathic potential of goniothalamin allelochemicals from Malyasian plant Goniothalamus andersonii J. Sncclair by sandwich method. Allelopathy Journal 2019;46(1):25-40. https://doi.org/10.26651/allelo.j/2019-46-1-1196
12. Anwar T, Ilyas N, Qureshi R, Malik M. A. Allelopathic potential of Carica papaya against selected weeds of wheat crop. Pak J Bot 2019; 51(1):279-87. https://doi.org/10.30848/PJB2019-1(37)
13. Qasem JR. A survey of the phytotoxicity of common weeds, wild grown species and medicinal plants on wheat. Allelopathy Journal 2017;42(2):179-94 https://doi.org/10.26651/allelo.j./2017-42-2-1115
14. Bakhshayeshan-Agdam H, Salehi-Lisar SY, Motafakkerazad R. Allelopathic effects of redroot pigweed (Amaranthus retroflexus L) aqueous extract on cucumber and wheat. Allelopathy Journal 2019; 46(1):55-72. https://doi.org/10.26651/allelo.j/2019-46-1-1198
15. Li ZR, LiuYB, Zhou XM, Li XG, Bai LY. Allelopathic herbicidal effects of crude ethanolic extracts of Veronica persica (Lour) Merr. on weeds. Allelopathy Journal 2019; 46(1):85-96. https://doi.org/10.26651/allelo.j/2019-46-1-1200
16. Wu H, Lin JM, Zhang JB. Allelopathic effects of Eucalyptus salubris F. Muell. and E. brockwayii C.A. Gardner on germination and seedling growth of prairie ground cherry (Physalis hederifolia A. Gray). Allelopathy Journal 2019; 46(1):109-20. https://doi.org/10.26651/allelo.j/2019-46-1-1202
17. Tahir NA, Azeez HA, Hama-Amin HH, Rashid JS, Omer DA. Antibacterial activity and allelopathic effects of extracts from leaf, stem and bark of Mt. Atlas mastic tree (Pistacia atlantica subsp kurdica) on crops and weeds. Allelopathy Journal 2019; 46(1):121-32. https://doi.org/10.26651/allelo.j/2019-46-1-1203
18. Thakur NS, Kumar D, Chauhan RS, Hedge HT, Gunaga RP. Allelopathic effects of Melia azedarach L on germination, growth and yield of black gram and chickpea. Allelopathy Journal 2019; 46(1):133-44. https://doi.org/10.26651/allelo.j/2019-46-1-1204
19. Hussain F. Field and Laboratory Manual of Plant Ecology. 1989;University Grants Commission, Islamabad.
20. Lodhi MAK, Nickell GI. Effects of leaf litter of Celtis laevigata on growth, water contents, and carbon dioxide exchange rates of three grass species. Bull Torrey Bot Club 1973; 100:59-165. https://doi.org/10.2307/2484627
21. Hussain F, Ahmad B, Illahi I. Allelopathic effects of Cenchrus ciliaris L and Bothriochloa pertusa (L) A. Camus. Pak. J. Bot 2010; 42(5): 3587-3604.
22. Hoagland DR, Arnon DI. The water-culture method of growing plants without soil. Calif Agr Expt Sta Circ 347. 1950.
23. Bassey CS, Okoi EP. Comparative evaluation of the allelopathic effects of the leaf extracts of three Asteraceae species (Ageratum conyzoides, Vernonia amygdalina, Artemisia annua). Archives of Current Research International 2018; 15(3):1-8. https://doi.org/10.9734/ACRI/2018/45397
24. Gulzar A, Siddiqui MB. Allelopathic effects of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var botrytis. Jour Suadi Soc Agric Science 2017; 16:375-82. https://doi.org/10.1016/j.jssas.2015.12.003
25. Manzoor SA, Zubair M, Hussain SB, Akhtar SNR, Nouman W. Evaluation of allelopathic effects of Calotropis procera against wheat (Triticum aestivum) using seedling rigor and germination indices. J Biodiver & Environ Sci 2013;3(5):25-30.
26. Premathilake UGAT, Wathugalal DL, Dharmadasa RM. Phytotoxic potential of lemon grass (Cymbopogon citrates (DC) Stapf. Allelopathy Journal 2018; 45(2):261-68. https://doi.org/10.26651/allelo.j./2018-44-2-1168
27. Thakur NS, Parmar AG, Gunaga RP, Patel DP. Allelopathic influence of leaf and leaf litter of white cedar (Melia azedarach L.) on eggplant and okra. Allelopathy Journal 2017; 42(2):295-306. https://doi.org/10.26651/allelo.j./2017-42-2-1124
28. Kluthe BG, Ali MBHB, Stephenson SL. Allelopathic influence of Eucalyptus on common Kenyan agricultural crops. J Agron Agric Sci 2018;1(1):2-6.
29. Chandrawat P, Sharma RA. The genus Calotropis: An overview on bioactive principles and their biosafety. Res J Recent Sci 2016;5(1):61-70.
30. Gulzar A, Siddiqui MB, Bi S. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophora L. and Allium cepa L. Protoplasma 2016;253(5):1211-21. https://doi.org/10.1007/s00709-015-0862-x
31. Waheed N, Jabeen K, Iqbal S, Javid A. Biopesticidal activity of Calotropis procera against Macrophomina phaseolina. African J Tradit Complement & Altern Med 2016;13(6):163-167. https://doi.org/10.21010/ajtcam.v13i6.23
32. Santos VHMde, Daneluzzi GS, Silva LP, da Silva RMG. Evaluation of allelopathic potential of leaf extracts of Kielmeyera coriacea on Lactuca sativa L. Biosci J.2015; 31(1): 259-67. https://doi.org/10.14393/BJ-v31n1a2015-17662
33. Hussain F, Zaidi MI, Chughtai SR. Allelopathic effects of Pakistani Weeds: Eragrostis poaeoides P. Beauv. Pak J Sci Ind Res 1984;27:159-64.
34. Hussain F, Abidi N, Malik ZH. Imperata cylindrica affects germination, early growth and cell division and development in some crop species. Pak J Sci Ind Res 1994; 37:100-03.
35. Cheng F, Cheng Z, Meng H, Tang X. The garlic allelochemicals diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansion gene expression. Front Plant Sci 2016;7:1199. https://doi.org/10.3389/fpls.2016.01199
36. Chaudhuri A, Kundu LM, Datta S, Chatterjee S, Goswami S, Roy GC et al. Allelopathic effects of aerial parts aqueous extract of Amelocissus latifolia (Roxb) Planch. in apical meristem cells. Asian J. Plant Sci. Res 2015;5(3):11-16.
37. Raoof KM, Siddiqui MB. Allelotoxic effect of parthenin on cytomorphology of broad bean (Vicia faba L.). Jour Saudi Soc Agric Sci 2013; 12:143-46. https://doi.org/10.1016/j.jssas.2012.11.001
38. Irum A, Tabassum S, Qureshi R, Gulfraz M, Anwar P Phytochemical analysis of medicinally important constituents of Teucrium stocksianum Boiss. Pak J Bot 2019; 51(3): 1067-74. https://doi.org/10.30848/PJB2019-3(17)
39. Cruz-Ortega R, Anaya GAL, Ramos L. Effects of allelopathic compounds of corn pollen on respiration and cell division of water melon. J ChemEcol1988; 14(1):71-86. https://doi.org/10.1007/BF01022532
40. Rai PD, Paudel N, Shakya S. R. Cytological effects of leaf extract of Artemisia vulgaris L. on meristematic cells of Allium cepa L.Our Nature 2012;10: 242-48. https://doi.org/10.3126/on.v10i1.7787
41. Mohammad FI, El-Ashry ZM. Cytogenetic effect of allelochemicals Brassica nigra L. extracts on Pisum sativum L. World Appl Sci. Journal 2012;20(3):344-53.
42. Talukdar D. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopathy Journal 2013;31 (1):71-90.
43. FrescuraVDal-Souto, Kuhn AW, Laughinghouse HD, Nicoloso FT, Lopes SJ, Tedesco SB. Evaluation of the allelopathic, genotoxic, and antiproliferative effect of the medicinal species Psychotria brachypoda and Psychotria birotula (Rubiaceae) on the germination and cell division of Eruca sativa (Brassicaceae). Caryologia 2013; 66:138-44. https://doi.org/10.1080/00087114.2013.821832
44. Fonseca VB, Tavares VRdeS, Goncalves VdM, Fritag RA, Bobrowski VL. Allelopathic potential of leaves and flowers extracts of Schinus terebinthifolius Raddi. Ceientifica 2016; 44(1):35-39. https://doi.org/10.15361/1984-5529.2016v44n1p35-39
45. Ayeni MJ, Akinyede OA. Effects of Calotropis procera (Ait.) R.Br. leaves on the germination and early growth of soybeans (Glycine max L). J Agric & Vet Sci 2014; 7(4): 5-9. https://doi.org/10.9790/2380-07420509
46. Lubini G, Fachinetto JM, Launghingouse HD, Paranhos JT, Silva ACF, Tedesco SB. Extracts affecting mitotic division in root-tip meristematic cells. Biologia2008; 63(5): 647-651. https://doi.org/10.2478/s11756-008-0108-x
47. Sharma M, Tandon S, Agarwal V, Bhat KG, Kappadi D, Chandrashekhar P et al. Evaluation of antibacterial activity of Calotropis gigantea against Streptococucs mutans and Lactobacillus acidophilus: an in vitro comparative study. J Conserv Dentistry 2015; 18(1):457-460. https://doi.org/10.4103/0972-0707.168809
48. Abdelmigid HA, Morsi MM. Cytotoxic and molecular aspects of allelopathic effects of leaf residues of Eucalyptus globolus on soyabean (Glycine max). J. Eng & Biotechnol 2017; 15:297-302. https://doi.org/10.1016/j.jgeb.2017.08.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).