Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Unveiling genetic richness: Profiling broad bean diversity in the Nilgiri Hills through morphological, biochemical, and SSR markers

DOI
https://doi.org/10.14719/pst.6069
Submitted
22 October 2024
Published
07-05-2025 — Updated on 28-08-2025
Versions

Abstract

This study aimed to uncover the genetic relationship among broad bean genotypes to establish a high-yielding strain to elevate the status of this underutilized vegetable in the country. Twenty broad bean genotypes were assessed using randomized block design to reveal their genetic connections derived from twelve morphological factors and seven biochemical attributes. In addition, SSR primers were used to examine the molecular differences. The multifaceted data obtained were combined to evaluate genetic distinctions among these genotypes. The genetic analysis revealed that pod production per plant exhibited superior values of both phenotypic and genotypic coefficient of variation. Association analysis of green pod yield featured a strong positive correlation with seed yield, carbohydrate content, pod count per plant and 100 seed mass. The most notable positive direct influence on green pod yield was due to 100 seed weight. Choosing traits with a strong correlation with pod yield, along with moderate to high levels of phenotypic coefficient of variation (PCV), genotypic coefficient of variance (GCV), heritability and genetic progress would boost the effectiveness of the broad bean improvement program. The cluster analysis sorted the 20 genotypes into six groups, highlighting the considerable variation within each group. Among the SSR primers screened, the peak PIC score of 0.660 was noticed for the primer GBSSR-VF-172. The dendrogram constructed based on SSR markers resulted in two major clusters, illustrating the genetic affiliations and diversity within the genetic lines. This multidimensional characterization highlighted significant genetic disparities among broad bean genotypes, facilitating the selection of superior genotypes to develop high-yielding cultivars.

References

  1. 1. Rahate KA, Madhumita M, Prabhakar PK. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT. 2021;138:110796. https://doi.org/10.1016/j.lwt.2020.110796
  2. 2. Singh AK, Bharati RC, Manibhushan NC, Pedpati A. An assessment of faba bean (Vicia faba L.) current status and future prospect. Afr J Agric Res. 2013;8(50):6634‒41. https://doi.org/10.5897/AJAR2013.7335
  3. 3. Mishra N, Tripathi MK, Tiwari S, Tripathi N, Trivedi HK. Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Res. 2022;45(10):1309‒16. http://dx.doi.org/10.18805/LR-4240
  4. 4. Teklu DH, Kebede SA, Gebremichael DE. Assessment of genetic variability, genetic advance, correlation and path analysis for morphological traits in sesame genotypes. Asian J Agric Res. 2014;8(4):181‒94. https://doi.org/10.3923/ajar.2014.181.194
  5. 5. Jain S, Kumar A, Mamidi S, McPhee K. Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol Biotechnol. 2014;56:925‒38. https://doi.org/10.1007/s12033-014-9772-y
  6. 6. Horowitz W. Official methods of analysis of the association of analytical chemists. Association of Official Analytical Chemists, Washington, DC; 1980 https://doi.org/10.1002/jps.2600700437
  7. 7. Larson MG. Analysis of variance. Circulation. 2008;117(1):115‒21. https://doi.org/10.1161/CIRCULATIONAHA.107.654335
  8. 8. Burton GW, Vane DE. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron J. 1953;45(10):478‒81. http://dx.doi.org/10.2134/agronj1953.00021962004500100005x
  9. 9. Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in soybeans. Agron J. 1955;47(7):314‒18. https://doi.org/10.2134/AGRONJ1955.00021962004700070009X
  10. 10. Dewey DR, Lu K. A correlation and path‐coefficient analysis of components of crested wheatgrass seed production. Agron J. 1959;51(9):515‒18. https://doi.org/10.2134/agronj1959.00021962005100090002x
  11. 11. Sheoran OP, Pannu RS. OP stat: Statistical package for agricultural workers, College of Agriculture, Kaul, CCS Haryana Agricultural University, Hisar. India; 1999 Available from: http://opstat.pythonanywhere.com/
  12. 12. Gopinath PP, Prasad R, Joseph B, Adarsh VS. GRAPES: General R shiny based analysis platform empowered by statistics; 2020 Available from: https://www.kaugrapes.com/home
  13. 13. STAR version 2.0.1. Biometrics and breeding informatics. Los Baños, Laguna: PBGB Division, International Rice Research, Institute (IRRI); 2014 Available from: http://bbi.irri.org/
  14. 14. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceed Nat Acad Sci. 1984;81(24):8014‒18. https://doi.org/10.1073/pnas.81.24.8014
  15. 15. Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T, et al. Simple sequence repeats (SSRs) in faba bean: new loci from Orobanche‐resistant cultivar ‘Giza 402’. Plant Breed. 2009;128(2):149‒55. https://doi.org/10.1111/j.1439-0523.2008.01584.x
  16. 16. Yang T, Bao SY, Ford R, Jia TJ, Guan JP, He YH, et al. High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics. 2012;13:1. https://doi.org/10.1186/1471-2164-13-602
  17. 17. Suresh S, Park JH, Cho GT, Lee HS, Baek HJ, Lee SY, et al. Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules. 2013;18(2):1844‒56. https://doi.org/10.3390/molecules18021844
  18. 18. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32(3):314‒31. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1686077/
  19. 19. Peakall RO, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288‒95. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  20. 20. Kumar S, Layek S, Upadhyay A, Pandit MK, Nath R, Sarker A. Genetic characterization for quantitative and qualitative traits and its relationship in faba bean (Vicia faba L.). Indian J Agric Res. 2020;54(3):336‒42. http://dx.doi.org/10.18805/IJARe.A-5252
  21. 21. Chaurasia H, Arya RK, Choudhary RR, Reenu, Amit. Genetic variability, correlation and path analysis in faba bean (Vicia faba) for yield and its attributing traits under semi-arid conditions. Pharma Innov J. 2022;11(4):530‒37. https://www.thepharmajournal.com/archives/?year=2022&vol=11&issue=4&ArticleId=11832
  22. 22. Elgamal A, Ibrahim A, Abdelallah S. Genetic variation within F2 populations for some crosses of broad bean (Vicia faba L.). J Adv Agric Res. 2015;20(4):570‒85. https://dx.doi.org/10.21608/jalexu.2015.161597
  23. 23. Dewangan NK, Dahiya GS, Janghel DK, Dohare S. Diversity analysis for seed yield and its component traits among faba bean (Vicia faba L.) germplasm lines. Legume Res. 2022;45(6):689‒94. http://dx.doi.org/10.18805/LR-4301
  24. 24. Waly FA, Ibrahim RA, El-Wahab A, Gehad MM. Genetic variability, heritability and genetic advance of seed yield and its components for some promising genotypes of faba bean. J Plant Prod. 2021;12(4):429‒34. https://dx.doi.org/10.21608/jpp.2021.169634
  25. 25. Kaur H, Singh I, Sethi S, Bhatia D, Gill BS, Singh S. Genetic divergence for seed yield enhancing and quality traits in pigeon pea [Cajanus cajan (L.) millsp.]. Legume Res. 2023;46(6):684‒89. http://dx.doi.org/10.18805/LR-4739
  26. 26. Ertiro TA, Kebede GY, Assen KY, Haile GA, Gutu DT. Variability and association of some morpho-agronomic traits in advanced faba bean (Vicia faba L.) genotypes at potential areas of South Eastern Ethiopia. Asian J Res Crop Sci. 2023;8(4):198‒210. https://doi.org/10.9734/ajrcs/2023/v8i4199
  27. 27. Bhanu AN, Singh MN, Tharu R, Saroj SK. Genetic variability, correlation and path coefficient analysis for quantitative traits in chickpea genotypes. Indian J Agric Res. 2017;51(5):425‒30. 10.18805/IJARe.A-4687
  28. 28. Neda B, Feyissa T, Dagne K, Assefa E. The study of morphological characteristics and statistics of the phenotypes and correlation in faba bean (Vicia faba L.) germplasm. Plant Breed Biotechnol. 2021;9(2):139‒63. https://doi.org/10.9787/PBB.2021.9.2.139
  29. 29. Abd El-Aty MS, El-Hity MA, Abo Sen TM, El-Rahaman IA, Ibrahim OM, Al-Farga A, et al. Generation mean analysis, heterosis and genetic diversity in five Egyptian faba beans and their hybrids. Sustain. 2023;15(16):12313. https://doi.org/10.3390/su151612313
  30. 30. Prakash N, Kumar R, Choudhary VK, Singh CM. Molecular assessment of genetic divergence in pea genotypes using microsatellite markers. Legume Res. 2016;39(2):183‒88. http://dx.doi.org/10.18805/lr.v0iOF.7483
  31. 31. Tufan H, Erdoğan C. Genetic diversity in some faba bean (Vicia faba L.) genotypes assessed by simple sequence repeats. Biotechnol Biotechnol Equip. 2017;31(1):29‒35. https://doi.org/10.1080/13102818.2016.1253435
  32. 32. Rebaa F, Abid G, Aouida M, Abdelkarim S, Aroua I, Muhovski Y, et al. Genetic variability in Tunisian populations of faba bean (Vicia faba L. var. major) assessed by morphological and SSR markers. Physiol Mol Biol Plants. 2017;23:397‒409. https://doi.org/10.1007/s12298-017-0419-x
  33. 33. Ammar MH, Alghamdi SS, Migdadi HM, Khan MA, El-Harty EH, Al-Faifi SA. Assessment of genetic diversity among faba bean genotypes using agro-morphological and molecular markers. Saudi J Biol Sci. 2015;22(3):340‒50. https://doi.org/10.1016/j.sjbs.2015.02.005
  34. 34. Tahir NA, Omar DA, Lateef DD, Ahmad DA, Salih SH, Khal HL. Diversity and population structure analysis of faba bean (Vicia faba L.) accessions using SSR markers. J Agric Sci Technol. 2019;21(2):463‒74. http://jast.modares.ac.ir/article-23-15855-en.html

Downloads

Download data is not yet available.