Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Enhancement of thiodicarb efficacy using synergists and role of carboxylesterase in potentiation of synergistic activity in brinjal fruit and shoot borer (Leucinodes orbonalis Guenee)

DOI
https://doi.org/10.14719/pst.6091
Submitted
23 October 2024
Published
25-01-2025
Versions

Abstract

The primary cause of low productivity in brinjal is the infestation by the fruit and shoot borer and field control failure is due to the evolution of insecticide resistance. In the current study, an investigation has been carried out in bimonthly intervals from Nov-2021 to Sept-2022 to assess the efficacy of some selected synergists with a carbamate, thiodicarb and the role of carboxylesterase enzyme in imparting insecticide resistance in Brinjal fruit and shoot borer from two locations of Odisha, Bhubaneswar and Bargarh. Out of all the synergists tested in the topical bioassay method, propargyl-oxy-phthalimide (PP) being a member of esterase hydrolase inhibitor group provided remarkable SR ratio (10.78) during May- 2022 in the Bhubaneswar population while that of Bargarh population indicated comparatively higher value (12.68) indicating efficacy of the synergist lowering the dose of thiodicarb to 1.464 µg/µl compared to 18.564 µg/µl when thiodicarb alone is used. This can be related to enhanced levels of detoxifying enzyme, Carboxylesterase in Bhubaneswar during May 2022 (4.52-fold) and Bargarh (5.36-fold) population compared to laboratory-reared susceptible population revealing the role of carboxylesterase enzyme in detoxification mechanism behind the efficacy of the synergists. This study highlights the importance of synergists like PP and Triphenyl phosphate (TPP) and suggests their inclusion in the existing pest management strategies of L. orbonalis in a wider agricultural area they reduce doses of insecticides and hence reduce impact on the environment which can lead to sustainable agriculture.

References

  1. Mannan MA, Begum A, Rahman MM, Hossain MM. Screening of local and exotic brinjal varieties/ cultivars for resistance to brinjal shoot and fruit borer, Leucinodes orbonalis Guen. Pakistan Journal of Biological Science. 2003; 6:488-92. https://doi.org/10.3923/pjbs.2003.488.492
  2. Netam M, Lakra R, Koshta VK, Sharma D, Deole S. Screening of shoot and fruit borer (Leucinodes orbonalis Guenee.) for resistance in brinjal (Solanum melongena L.) germplasm lines. International Journal of Current Microbiology and Applied Science. 2018;7(02):3700-06. https://doi.org.10.20546/ijcmas.2018.702.439
  3. Mally R, Korycinska A, Agassiz DJL, Hall J, Hodgetts J, Nuss M. Discovery of an unknown diversity of Leucinodes species damaging Solanaceae fruits in sub-Saharan Africa and moving in trade (Insecta. Lepidoptera, Pyraloidea). Zookeys. 2015; 472:117–62. https://doi.org.10.3897/zookeys.472.8781
  4. Gaganpreet SB, Surender KP, Jatiender KD, Gagandeep S. Survey on pesticide use pattern and farmers perceptions in cauliflower and brinjal growing areas in three districts of Himachal Pradesh, India. International Journal of Current Microbiology andAppliedScience. 2018;7(03):241723.https://doi.org/10.20546/ijcmas.2018.703.281
  5. Shehawy AA, Alsheri ANZ. Toxicity and biochemical efficacy of novel pesticides against Aphis craccivora Koch (Hemiptera: Aphididae) in relation to enzyme activity. Journal of Plant Protection and Pathology. 2015; 6:1507-17.
  6. Lalita, Devi S, Kashyap L. Biology and mechanisms of insecticide resistance to brinjal shoot and fruit borer: A review. Journal of Entomology and Zoology Studies.2020;8(4):2111-18.
  7. Srinivasan R. Integrated pest management for eggplant fruit and shoot borer (Leucinodes orbonalis) in south and southeast Asia: past, present and future. Journal of Biopesticides. 2008;1:105-12. http://doi.org/10.57182/jbiopestic.1.2.105-112
  8. Malathi VM, Jalali SK, Gowda DK, Mohan M, Venkatesan T. Establishing the role of detoxifying enzymes in field evolved resistance to various insecticides in the brown plant hopper (Nilaparvata lugens) in South India. Insect Science. 2015; 24:35-46. https://doi.org.10.1111/1744-7917.12254
  9. Yu SJ, Nguyen SN, Abo-Elghar GE. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (JE Smith). Pesticide Biochemistry and Physiology. 2003; 77:1-11.
  10. CABI. Crop protection compendium. CAB International, 2023.Available at: http://www.cabicompendium.org/cpc.
  11. Jeyanthi H, Kombairaju S. Pesticide use in vegetable crops: frequency, intensity and determinant factors. Agricultural Economics Research Review. 2005; 18:209-21.
  12. Kao CH, Hung CF, Sun CN. Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. Journal of Economic Entomology. 1989; 82:1299-1304. https://doi.org.10.1039/jee/82.5.1299
  13. Munje SS, Salunke PB, Botre BS. Toxicity of newer insecticides against Leucinodes orbonalis (Guen.). Asian Journal of Biological Science.2015;10:106-09. https://doi.org.10.15740/has/ajbs/10.1/106-109.
  14. Che W, Shi T, Wu Y, Yang Y. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology.2013;106(4):1855-62. https://doi.org/10.1603/EC13128.
  15. Islam MS, Choudhury MAR, Maleque AM, Mondal MF, Hassan K, Khan AU. Management of brinjal shoot and fruit borer (Leucinodes orbonalis Guen.) using selected bio-rational insecticides. Fundamentals of Applied Agriculture.2019;4(4):1025-31. https://doi.org.10.5455/faa.55331.
  16. Pavlidi N, Vontas J, Leeuwen TV. The role of glutathione S-transferase (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science.2018;27:97-102. https://doi.org.10.1016/j.cois.2018.04.007.
  17. Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino AS, Claudianos C. Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Biochemistry and Molecular Biology.2010;19:147-63. https://doi.org/10.1111/j.1365-2583.2009.00961.x
  18. Yu QY, Lu C, Li B, Xiang ZH, Zhang Z. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics.2009;10:553. https://doi.org/10.1186/1471-2164-10-553
  19. Latif MA, Rahman MM, Alam MZ. Efficacy of nine insecticides against shoot and fruit borer, Leucinodes orbonalis Guenee (Lepidoptera: Pyralidae) in eggplant. Journal of Pest Science.2010;83:391-97. https://doi.org.10.1007/s10340-010-0309-2.
  20. Cheng X, Chang C, Daia SM. 2010. Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest Management Science. 66: 762-66. https://doi.org/10.1002/ps.1939
  21. Kaur J, Kang BK, Singh B. Baseline data for insecticide resistance monitoring in Brinjal shoot and fruit borer, Leucinodes orbonalis, Guenee. The Bioscan.2014;9(4):1395-98.
  22. Perry T, Batterham P, Daborn PJ. The biology of insecticidal activity and resistance. Insect Biochemistry and Molecular Biology. 2011; 41: 41122. https://doi.org.10.1016/j.ibmb.2011.03.003.
  23. Patil PD. Technique for mass rearing of brinjal shoot and fruit borer, Leucinodes orbonalis Guen. Journal of Entomological Research.1990;14:164-72.
  24. Kodandaram MH, Rai AB, Sireesha K, Halder J. Efficacy of cyantraniliprole a new anthranilic diamide insecticide against Leucinodes orbonalis (Lepidoptera: Crambidae) of brinjal. Journal of Environmental Biology.2015;36:1415-20.
  25. Zhang SK, Ren XB, Wang YC, Su J. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides. Journal of Economic Entomology. 2014;107(2):815-20. https://doi.org/10.1603/ec13506.
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol. Chem. 1951: 193(1):265-75.
  27. Devonsire AL, Moorers GD. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pesticide biochemistry and Physiology. 1982; 18(2): 235-46. https://doi.org/10.1016/0048-3575(82)90110-9
  28. Abbott WS. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 1925;18(2):265-67.
  29. LeOra S. Polo-Plus, POLO for Windows; LeOra Software:1994; Petaluma, CA, USA.
  30. Finney DJ. Probit analysis, 3rd ed. Cambridge University Press, Cambridge, United Kingdom. 1971.
  31. Kariyanna B, Prabhuraj A, Asokan R, Agrawal A, Gracy R G, Jyoti P et al. Genome mining and expression analysis of carboxylesterase and glutathione S-transferase genes involved in insecticide resistance in eggplant shoot and fruit borer, Leucinoides orbonalis (Lepidoptera, Crambidae). Frontiers in Physiology.2020;11:594845. https://doi.org.10.3389/fphys.2020.594845.
  32. Nayak US, Baral K, Mandal P, Chatterjee S. Seasonal variation in the larval population of Brinjal shoot and fruit borer Leucinodes orbonalis Guenee with respect to different ecological parameters. International Journal of Bio-Resource and Stress Management.2014;5(3):409-12.
  33. Shaukat MA, Ahmad A, Mustafa F. Evaluation of resistance in Brinjal (Solanum melongena L.) against brinjal shoot and fruit borer (Leucinodes orbonalis Guen.) infestation: A review. International Journal of Applied Science & Biotechnology.2018;6(3):199-206. https://doi.org.10.3126/ijasbt.v6i3.19187.
  34. Botre BS, Salunke PB, Munje SS, Barkhade UP. Monitoring insecticide resistance in Leucinodes orbonalis (Guen). Bioinfolet.2014;11(2B):521-23.
  35. Friedman R. Genomic organization of the glutathione S-transferase family in insects. Molecular Phylogenetics Evolution. 2011; 61: 92432. https://doi.org.10.016/j.ympev.2011.08.027.
  36. Mohan M, Gujar GT. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection.2003;22:495-504. https://doi.org/10.1016/s0261-2194(02)00201-6
  37. Kodandaram MH, Rai AB, Sharma SK, Singh B. Shift in the level of susceptibility and relative resistance of brinjal shoot and fruit borer Leucinodes orbonalis (Guen) to diamide insecticides. Phytoparasitica. 2017; 45:151–54. https://doi.org/10.1007/s12600-017-0584-z
  38. Shirale D, Patil M, Parimi S. Insecticide resistance in field populations of Leucinodes orbonalis (Lepidoptera, Crambidae) in India. Canadian Entomology.2017;149:399-407. https://doi.org.10.4039/tce.2017.3
  39. Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, DiFonzo C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of economic entomology. 2019;112(2):792-802. https://doi.org.10.1093/jee/toy372
  40. Van Asperen K. A study of house fly esterase by means of a sensitive colorimetric method. Journal of Insect Physiology.1962;8:401-16. https://doi.org/10.1016/0022-1910(62)90074-4
  41. Mohan M, Gujar GT. Local variation in susceptibility of diamond back moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection.2003;22:495-504. https://doi.org.10.1016/s0261-2194(02)00201-6
  42. Wang Y,Zhao Shi L, Xu Z, He L Resistance selection and biochemical mechanism of resistance against cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology.2014;111:24-30. http://doi.org/10.1016/j.pestbp.2014.04.004
  43. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J. Sharakhova MV et al. Evolution of supergene families associated with insecticide resistance. Science. 2002; 298:179-81. https://doi.org.10.1126/science.1076781
  44. Meisel RP, Scott JG. Using genomic data to study insecticide resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology.2018;151:76-81. https://doi.org.10.1016/j.pestbp.2018.01.001
  45. Zhang Y, Wang L, Guo H, Li G, Zhang Z, Xie L. A transcriptome-based screen of carboxylesterase-like genes that are involved in chlorpyriphos resistance in Laodelphax striatellus (Fallen). Pesticide Biochemistry and Physiology.2012;104:224-28. https://doi.org/10.1016/j.pestbp.2012.08.006
  46. Cui F, Li MX, Chang HJ, Mao Y, Zhang HY, Lu LX et al. Carboxylesterase mediated insecticide resistance quantitative increase induces broader metabolic resistance than qualitative change. Pesticide Biochemistry and Physiology. 2015; 121: 88-96. http://10.1016/j.pestbp.2014.12.016

Downloads

Download data is not yet available.