Effect of Exclusion of Solar UV radiation on Plants
DOI:
https://doi.org/10.14719/pst.2014.1.4.61Keywords:
carbon metabolism, PS II, photosynthesis, UV exclusion, rubisco, UV-BAbstract
UV exclusion studies can provide the realistic assessments of sensitivity of plant to current level of UV radiation. Perusal of relevant literature reveals that UV exclusion causes enormous increase in the growth of aerial parts along with below ground parts of the plants. Exclusion of UV-B (280-315 nm) and UV-A+B (280-400 nm) enhanced the photosynthetic pigments, net photosynthetic rate and stomatal conductance along with remarkable increase in the activity of Carbonic anhydrase, Rubisco and PEPCase. UV excluded plants have higher PS II efficiency, reducing power, CO2 fixation and decreased UV-B absorbing compounds, channeling the additional fixation of carbon to improvement of yield. UV exclusion studies indicate that dicot plants are more sensitive than the monocot plants to current level of UV-B.
Downloads
References
Albert, K, R., Mikkelsen, T.N., & Ro-Poulsen, H. (2005). Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll-a fluorescence parameters from fluorescence transients. Physiologia Plantarum, 124, 208–226. doi:10.1111/j.1399-3054.2005.00502.x
Albert, K.R., Mikkelsen, T.N., & Ro-Poulsen, H. (2008). Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum. Physiologia Plantarum, 133, 199–210. doi:10.1111/j.1399-3054.2008.01065.x
Albert, K.R., Mikkelsen, T.N., Ro-Poulsen, H., Arndal, M.F., & Michelsen, A. (2011). Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. Environmental Experimental Botany, 72, 439–447. doi:10.1016/j.envexpbot.2010.07.001
Albert, K.R., Mikkelsen, T.N., Ro-Poulsen, H., Michelsen, A., Arndal, M.F., Bredahl, L., Hakansson, K.B., Boesgaard, K., & Schmidt, N.M. (2010). Improved UV-B screening capacity does not prevent negative effects of ambient UV irradiance on PSII performance in High Arctic plants. Results from a six year UV exclusion study. Journal of Plant Physiology, 167, 1542–1549. doi:10.1016/j.jplph.2010.05.023
Allen D.J., Mckee I.F., Farage P.K. & Baker N.R. (1997). Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant, Cell and Environment, 20, 633–640. doi:10.1111/j.1365-3040.1997.00093.x
Allen, D.J., Nougúes, S., & Baker, N.R. (1998). Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? Experimental Botany, 49, 1775– 1778.
Ambasht, N.K., & Agrawal, M. (1998). Physiological and biochemical responses of Sorghum vulgare plants to supplemental ultraviolet UV-B radiation. Canadian Journal of Botany, 76, 1–5. doi:10.1139/b98-137
Amudha, P., Jayakumar, M., & Kulandaivelu, G. (2005). Impacts of ambient solar UV (280–400 nm) radiation on three tropical legumes. Journal of Plant Biology, 48, 284–291. doi:10.1007/BF03030524
Balouchi, H.R., Sanavy, S.A.M., Emam, Y., Dolatabadian, A. (2009). UV radiation, elevated CO2 and water stress effect on growth and photosynthetic characteristics in durum wheat. Plant Soil Environment, 55, 443–453.
Baroniya, S.S., Kataria, S., Pandey, G.P., & Guruprasad,K.N. (2011.) Intraspecific variation in sensitivity to ambient Ultraviolet-B radiation in growth and yield characteristics of eight soybean cultivars grown under field conditions. Brazilian J. Plant Physiology. 23(3), 197-202.
Bassman, J.H. (2004). Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochemistry and Photobiology, 79, 382–398. doi:10.1562/SI-03-24.1
Bischof, K., Hanelt, D., & Wiencke, C. (2000). Effect of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 211, 555–562. doi:10.1007/s004250000313
Bischof, K., Krabs, G., Wiencke, C., & Hanelt, D. (2002). Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L. Planta, 215, 502–509. doi:10.1007/s00425-002-0774-9
Bredahl, L., Ro-Poulsen, H., Mikkelsen, T.N. (2004). Reduction of the ambient UV-B Radiation in the High Arctic increases Fv/Fm in Salix arctica and Vaccinium uliginosum and reduces stomatal conductance and internal CO2 concentration in Salix arctica. Arcti., Antarctic Alpine Research, 36, 363–368.
Callis, J. (1995). Regulation of protein degradation. Plant Cell, 7, 845–857. doi:10.1105/tpc.7.7.845
Cerovic, Z.G., Ounis, A., Cartelat, A., Latouche, G., Goulas, Y., Meyer, S., & Moya. I. (2002). The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environment, 25, 1663–1676. doi:10.1046/j.1365-3040.2002.00942.x
Chow, W.S., Strid, A., & Anderson, J. M. (1992). Recovery of photosynthetic functions and components after supplementary UV-B irradiation. Photosynthetic Research, 34, 224.
Coleman, R.S., & Day, T.A. (2004). Response of cotton and sorghum to several levels of subambient solar UV-B radiation: a test of the saturation hypothesis. Physiologia Plantarum, 122, 362–372. doi:10.1111/j.1399-3054.2004.00411.x
Dai, Q., Yan, B., Huang, S., Liu, X., Peng, S., Miranda, … OlsZyk, D.M. (1997). Response of oxidative stress defense systems in rice (Oryza sativa L.) leaves with supplemental UV-B radiation. Physiologia Plantarum, 101, 301–308. doi:10.1111/j.1399-3054.1997.tb01000.x
Day, T.A., & Vogelmann, T.C. (1995). Alterations in photosynthesis and pigment distribution in pea leaves following UV-B exposure. Physiologia Plantarum, 94, 433–440. doi:10.1111/j.1399-3054.1995.tb00950.x
Demmig-Adams, B., Adams III, W.W. (1992). Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Mol. Boil., 43, 599–626. doi:10.1146/annurev.pp.43.060192.003123
Desimone, M., Henke, A., & Wagner, E. (1996). Oxidative stress induces partial degradation of the large subunit of ribrose-1,5-bisphosphate carbxylase/ oxygenase in isolated chloroplasts of barley. Plant Physiology, 111, 789–796.
Desimone, M., Wagner, E., & Johanningmeier, U. (1998). Degradation of active-oxygen-modified ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP hydrolysis. Planta, 205, 459–466. doi:10.1007/s004250050344
Flint, S.D., & Caldwell, M.M. (1996). Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighing factors. J Plant Physiology, 148, 107-114. doi:10.1016/S0176-1617(96)80301-4
Furbank, R.T, & Taylor, W.C. (1995). Regulation of photosynthesis in C3 and C4 plants: A Molecular Approach. Plant Cell 7: 797-807. doi:10.1105/tpc.7.7.797
Germ, M., Kreft, I., & Osvald, J. (2005). Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology Biochemistry, 43, 445–448. doi:10.1016/j.plaphy.2005.03.004
Goncavles, J.F.C., & Junior, U.M.S. (2005). Utilization of the chlorophyll a fluoresecence technique as a tool for selecting tolerant species to environments of high irradiance. Brazilian Journal of Plant Physiology, 17, 307–313.
Guruprasad, K.N., Bhattacharje, S., Kataria, S., Yadav, S., Tiwari, A., Baroniya, S., … & Mohanty, P. (2007). Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-A components of solar radiation: characterization of photosynthetic parameters in leaves. Photosynthetic Research, 94, 299–306. doi:10.1007/s11120-007-9190-0
Hakala-Yatkin, M., Mäntysaari, M., Mattila, H., & Tyystjärvi, E. (2010). Contributions of visible and ultraviolet parts of sunlight to photoinhibition. Plant Cell Physiology, 51, 1745–1753. doi:10.1093/pcp/pcq133
Hatch, M.D., & Burnell, J.N. (1990). Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiology, 93, 825–828. doi:10.1104/pp.93.2.825
He, J., Huang, L. K., Chow, W. S., Whitecross, M. L., & Anderson, J. M. (1993). Effects of supplementary ultraviolet-B radiation on rice and pea plants. Australian Journal of Plant Physiology, 20, 129–142. doi:10.1071/PP9930129
He, J., Huang, L.K., Whitcross, M.I. (1994). Chloroplast ultra structure changes in Pisum sativum associated with supplementary UV-B radiation. Plant Cell Environment, 17, 771–775. doi:10.1111/j.1365-3040.1994.tb00170.x
Helsper, J. P. F. G., de Vos, C. H. R., Maas, F. M., Jonker, H. H., van den Broeck, H. C., Jordi, … Schapendonk, A. H. C. M. (2003). Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiologia Plantarum, 117, 171– 178. doi:10.1034/j.1399-3054.2003.00037.x
Hofmann, R.W., Swinny, E.E., Bloor, S.J., Markham, K.R., Ryan, K.G., Campbell, B.D., … Fountain, D.W. (2000). Responses of nine Trifolium repen L. populations to ultraviolet-B radiation: differential flavonol glycoside accumulation and biomass production. Annals of Botany, 86, 527–537. doi:10.1006/anbo.2000.1216
Ishida, H., Makino, A., & Mae, T. (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329. Journal of Biological Chemistry, 274, 5222–5226. doi:10.1074/jbc.274.8.5222
Ishida, H., Shimizu, S., Makino, A., & Mae, T. (1998). Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta, 204, 305–309. doi:10.1007/s004250050260
Jenkins, G.I. (2008). Environmental regulation of flavonoid biosynthesis. In: Givens, I., Baxter, S., Minihane, A.M., & Shaw, E. Health Benefits of Organic Food: Effects of the Environment. CABI, pp. 240–260. Oxford.
Jenkins, G.I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 60, 407–431. doi:10.1146/annurev.arplant.59.032607.092953
Kataria, S., & Guruprasad, K.N. (2012a). Solar UV-B and UV-A/B; exclusion effects on intraspecific variations in crop growth and yield of wheat varieties. Field Crops Research, 125, 8–13. doi:10.1016/j.fcr.2011.08.011
Kataria, S., & Guruprasad, K.N. (2012b). Intraspecific variations in growth, yield and photosynthesis of sorghum varietiesto ambient UV (280–400 nm) radiation. Plant Science, 196, 85– 92. doi:10.1016/j.plantsci.2012.07.011
Kataria, S., & Guruprasad, K.N. (2014). Exclusion of solar UV components improves growth and performance of Amaranthus tricolor varieties. Scientia Horticulturae, 174, 36–45. doi:10.1016/j.scienta.2014.05.003
Kataria, S., Guruprasad, K.N., Ahuja, S., & Singh, B. (2013). Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. Journal of Photochemistry and Photobiology B: Biology, 127, 140–152. doi:10.1016/j.jphotobiol.2013.08.013
Krause, G.H., Grube, E., Virgo, A., Winter, K. (2003). Sudden exposure to solar UV-B radiation reduces net CO2 uptake and photosystem-I efficiency in shade-acclimated tropical tree seedlings. Plant Physiology, 131, 745–752. doi:10.1104/pp.014076
Mackermess, S.A.H., Surplus, S.L., Jordan, B.R., & Thomas, B. (1998). Effects of supplementary ultraviolet-B radiation on photosynthetic transcripts at different stages of leaf development and light levels in pea (Pisum sativum L.): role of active oxygen species and antioxidant enzymes. Photochemistry and Photobiology, 68, 88–96. doi:10.1111/j.1751-1097.1998.tb03257.x
Mazza, C.A., Battissta, D., Zima, A.M., Scwarcberg-Bracchitta, M., Giordano, C., Acevedo, A., … Ballaré, C.L. (1999). The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environment, 22, 61–70. doi:10.1046/j.1365-3040.1999.00381.x
McKenzie, R.L., Aucamp, P.J., Bais, A.F., Björn, L.O., Ilyas, M., & Madronich, S. (2011). Ozone depletion and climate change: impacts on UV radiation. Photochemistry Photobiology Science 10, 182–198. doi:10.1039/c0pp90034f
Middleton, E.M., & Teramura, A.H., (1993). The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiology, 103, 741–752.
Mohammed, A.R., & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Europian Journal of Agronomy, 33, 117–123. doi:10.1016/j.eja.2009.11.006
Morales, L. O., Tegelberg, R., Brosché, M., Keinänen, M., Lindfors, A., & Pedro-Aphalo, J. (2010). Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiology, 30, 923–934. doi:10.1093/treephys/tpq051
Moussa, H.R., & Khodary, S.D.K. (2008). Changes in growth and 14CO2 fixation of Hordeum vulgare and Phaseolus vulgaris induced by UV-B radiation. J. Agric. Soc. Sciences 4, 59–64.
Nogués, S., Allen, D. J., Morison, J. I. L., & Baker, N. R. (1998). Ultraviolet-B radiation effects on water relations, leaf development and photosynthesis in droughted Pea Plants. Plant Physiology, 117, 173-181. doi:10.1104/pp.117.1.173
O'Leary, M. H., (1982). Phosphoenolpyruvate Carboxylase: An Enzymologist's View. Annual Review of Plant Physiology, 33, 297-315. doi:10.1146/annurev.pp.33.060182.001501
Pal, M., Sharma, A., Abrol, Y.P., & Sengupta, U.K. (1997). Exclusion of solar UV-B radiation from normal spectrum on growth of mung bean and maize. Agriculture Ecosystem Environment, 61, 29–34. doi:10.1016/S0167-8809(96)01087-0
Pal, M., Zaidi, P.H., Voleti, S.R., & Raj, A. (2006). Solar UV-B exclusion effect on growth and photosynthetic characteristics of wheat and pea. Journal of New Seeds, 8, 19–34. doi:10.1300/J153v08n01_02
Rajendiran, K., & Ramanujam, M.P. (2006). Interactive effects of UV-B irradiation and triadimefon on nodulation and nitrogen metabolism in Vigna radiata plants. Biologia Plantarum 50,709–712. doi:10.1007/s10535-006-0112-3
Rao, M.V., Palijyath, G., & Ormrod, D.P. (1996). Ultraviolet-B and ozone induced Biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110, 125–136. doi:10.1104/pp.110.1.125
Reddy, K.R., Kakani, V.G., Zhao, D., Koti, S., & Gao, W. (2004). Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth development and hyperspectral reflectance. Journal of Photochemistry Photobiology, 79, 416–427. doi:10.1562/2003-11-19-RA.1
Reddy, R.K., Singh, S.K., Koti, S., Kakani, V.G., Zhao, D., Gao, W., & Reddy, V.R. (2013). Quantifying the effects of corn growth and physiological responses to Ultraviolet-B radiation for modeling. Agronomy Journal 105, 1367–1377. doi:10.2134/agronj2013.0113
Rinnan, R., Keinanen, M.M, Kasurinen, A., Asikainen, J., Kekki, T.K., Holopainen, T., … & Michelsen, A. (2005). Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass. Global Change Biology, 11, 564–574. doi:10.1111/j.1365-2486.2005.00933.x
Rousseaux, C.M., Flint, S.D., Searles, P.S., & Caldwell, M.M. (2004). Plant responses to current solar ultraviolet-B radiation and supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison. Photochemistry Photobiology, 80, 224–230. doi:10.1562/2004-03-30-RA-129.1
Saile-Mark, M. (1993). Zur beteiligung yon phytohormone an wachstum und blutenbildung verschiedener bohnenkulturvarietaten (Vigna vulgaris I_) in abhangigkeit von artifizeller und solarer UV-B strahlung. Karlsruher Beitr~ge zur Entwicklungs-und Okophysiologie der Pflanzen, 13, 1-152.
Saile-Mark, M., Tevini, M. (1997). Effects of solar UV-B radiation on growth, flowering and yield of central and southern European bush bean cultivars (Phaseolus vulgaris L.). Plant Ecology, 128, 115–125. doi:10.1023/A:1009750612676
Schumaker, M.A., Bassman, J.H., Robberecht, R., & Radamaker, G.K. (1997). Growth, leaf anatomy and physiology of Populus clones in response to solar ultraviolet-B radiation. Tree Physiology, 17, 617–626. doi:10.1093/treephys/17.10.617
Sharma, S., & Guruprasad, K.N. (2013). Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation. Plant Physiology and Biochemistry, 61, 97-102. doi:10.1016/j.plaphy.2012.10.003
Shine, M.B. & Guruprasad, K.N. (2012). Oxyradicals and PSII activity in maize leaves in the absence of UV components of solar spectrum. Journal of Bioscence, 37, 703–712. doi:10.1007/s12038-012-9248-9
Shiozaki, N, Hattori, I, Gojo, R, & Tezuka, T. (1999). Activation of growth and nodulation in a symbiotic system between pea plants and leguminous bacteria by near-UV radiation. J Photochemistry Photobiology B: Biol., 50, 33-37. doi:10.1016/S1011-1344(99)00065-2
Strid, A., Chow W. S., & Anderson, J. M. (1994). UV-B damage and protection at the molecular level in plants. Photosynthesis Research, 39, 475–489. doi:10.1007/BF00014600
Teramura, A.H., 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiology Plantarum, 58, 415–427. doi:10.1111/j.1399-3054.1983.tb04203.x
Turcsanyi, E., & Vass, I. (2000). Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex. Photochemistry Photobiology, 72, 513-520. doi:10.1562/0031-8655(2000)072<0513:IOPETB>2.0.CO;2
Turunen, M., Heller, W., Stich, S., Sandermann, H., Sutinen, M.L., & Norokorpi, Y. (1999). The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic. Environment Pollution, 106, 219–228. doi:10.1016/S0269-7491(99)00070-6
Xiong, F.S., & Day, T.A. (2001). Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiology, 125, 738–751. doi:10.1104/pp.125.2.738
Xu, C., Natarajan, S., & Sullivan, J.H., (2008). Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoids content. Environmental and Experimental Botany, 63, 39–48. doi:10.1016/j.envexpbot.2007.10.029
Yao, Y., Yang, Y., Ren, J., & Li, C. (2006). UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environmental and Experimental Botany, 57, 160–167. doi:10.1016/j.envexpbot.2005.05.009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).