Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Influence of IBA concentrations, zinc synergy and carrier agents on rooting and shooting attributes of rough lemon rootstock cuttings

DOI
https://doi.org/10.14719/pst.6133
Submitted
25 October 2024
Published
26-07-2025

Abstract

Adequate indole-3-butyric acid (IBA) concentration enhances cutting success rates and promotes uniform root growth, resulting in healthy plants with the desired traits and higher yields. This research investigated the effects of different IBA concentrations (2000 ppm and 4000 ppm) on the rooting and shooting characteristics of rough lemon cuttings. The present study employed a random block design with nineteen treatments, each with three replicates. Furthermore, primary root count, secondary root count, root diameter, root length, fresh root mass, dry root mass root volume, rooting, root-to-shoot ratio, shoot diameter, shoot length, shoots number, leaves number, sprouting percentage, survival percentage, fresh shoot mass, dry shoot mass and leaf area were studied. The present study also employed a comparative analysis of carrier agents, i.e., talc and activated charcoal, in the application of IBA for rough lemon cutting propagation. The research explored the synergistic effects of zinc and IBA on the rooting and shooting aspects of rough lemon stem cuttings. The 2000 ppm IBA performed better than 4000 ppm in the rooting and shooting parameters of the rough lemon. The application of (activated charcoal powder + 2000 ppm IBA + 0.50 % ZnSO4) concentration had better effect on various shooting parameters of rough lemon cuttings. Cuttings treated with activated charcoal as a carrier agent for IBA demonstrated superior performance. Zinc at concentrations of 0.25 % and 0.50 % with IBA (2000 ppm and 4000 ppm) demonstrated superior performance as compared to IBA alone (2000 ppm and 4000 ppm) in various morphological attributes of rough lemon. This study highlights the optimization of horticultural practices for the successful propagation and cultivation of rough lemon plants.

References

  1. 1. Taye MG, Debesay B, Tesfahun Y, Brhanu A. Optimization of an in vitro regeneration protocol for rough lemon rootstock (Citrus jambhiri L.) via direct organogenesis. Adv Crop Sci Tech. 2018;6:1. https://doi.org/10.4172/2329-
  2. 8863.1000329
  3. 2. Głąb T, Gondek K, Szewczyk W. Effects of plant growth regulators on the mechanical traits of perennial ryegrass (Lolium perenne L.). Sci Hortic. 2021;288:110351. https://doi.org/10.1016/j.scienta.2021.110351
  4. 3. Bhattacharjee A, Dubey S, Sharma S. “Next-generation bioformulations” for plant growth promotion and stress mitigation: A promising approach for sustainable agriculture. J Plant Growth Regul. 2023;42(10):6741–59. https://doi.org/10.1007/s00344-023-10996-z
  5. 4. Lan J, Wang B, Bo C, Gong B, Ou J. Progress on fabrication and application of activated carbon sphere in recent decade. J Ind Eng Chem. 2023;120:47–72. https://doi.org/10.1016/j.jiec.2022.12.045
  6. 5. Bowden AT. Non-traditional adjuvants and methods for applying root-promoting compounds in commercial cutting propagation. [dissertation]. Mississippi State (MS): Mississippi State University; 2022.
  7. 6. Bautista-Ojeda GI, Vargas-Hernández JJ, Jiménez-Casas M, López-Peralta MCG. Manejo de planta y aplicación de AIB en el enraizado de estacas de Pinus patula. Madera Bosques. 2022;28(1).Spanish. https://doi.org/10.21829/myb.
  8. 2022.2812060
  9. 7. Dugvekar M, Dixit S. Chemical treatments for modification of the surface morphology of coir fiber: A review. J Nat Fibers. 2022;19(15):11940–61. https://doi.org/10.1080/15440478.2022.2048938
  10. 8. Inoue S, Ilogu C, Sobze J-M. Effects of indole-3-butyric acid and age of stem cuttings on root morphology, growth and survival of Cornus sericea. J For Res. 2023;34(2):433–40. https://doi.org/10.1007/s11676-022-01490-5
  11. 9. Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem. 2021;160:257–68. https://doi.org/10.1016/j.plaphy.2021.01.028
  12. 10. Kassahun E, Tibebu S, Tadesse Y, Awish N. Synthesis optimization of activated carbon derived from scrap tire for adsorbent yield and methylene blue removal under response surface methodology. Adv Mater Sci Eng. 2022;2022(1):2325213. https://doi.org/10.1155/2022/2325213
  13. 11. Browne K, Mitchell BG. Multimodal environmental cleaning strategies to prevent healthcare-associated infections. Antimicrob Resist Infect Control. 2023;12(1):83. https://doi.org/10.1186/s13756-023-01274-4
  14. 12. Ozturk H, Niazi P, Mansoor M, Monib AW, Alikhail M, Azizi A. The function of zinc in animal, plant and human nutrition. J Res Appl Sci Biotechnol. 2023;2(2):35–43. https://doi.org/10.55544/jrasb.2.4.2
  15. 13. Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic pathways of hormones in plants. Metabolites. 2023;13(8):884. https://doi.org/10.3390/metabo13080884
  16. 14. Sakya AT, Sulistyaningsih E, Purwanto BH, Indradewa D. Evaluation of zinc efficiency and some nutritional and physiological responses of tomato cultivars. J Plant Nutr. 2023;46(18):4420–37. https://doi.org/10.1080/01904167.
  17. 2023.2241495
  18. 15. Praharaj S, Maitra S, Nath S, Hossain A, Sagar L, Pattanayak S, Banerjee M, Pramanick B, Shankar T, Pal A. Role of zinc in tolerance against different environmental stress. InBiology and Biotechnology of Environmental Stress Tolerance in Plants 2023 Jul 21 (pp. 197-213). Apple Academic Press. https://doi.org/10.1201/9781003346203-7
  19. 16. Kroin J, editor. Propagate plants from cuttings using dry-dip rooting powders and water based rooting solutions. Comb Proc Intl Plant Prop Soc; 2008.
  20. 17. El-Banna MF, Kasem MM, Hegazy AA, Helaly AA, Mosa A, El-Banna HY. Bee honey improved the performance of indole-3-butyric acid on promoting adventitious root formation of Cupressus macrocarpa L. var. Goldcrest: Morpho-biochemical and histoanatomical investigation. Ind Crops Prod. 2024;209:117971. https://doi.org/10.1016/j.indcrop.
  21. 2023.117971
  22. 18. Firth C, Trask A. Honey as an alternative rooting stimulant for cuttings. Honolulu (HI): University of Hawai'i; 2017:1–5.
  23. 19. Loconsole D, Sdao AE, Cristiano G, De Lucia B. Different responses to adventitious rhizogenesis under indole-3-butyric acid and seaweed extracts in ornamental cuttings: First results in Photinia x fraseri ‘Red Robin’. Agriculture. 2023;13(3):513. https://doi.org/10.3390/agriculture13030513
  24. 20. Zhao H, Wang Y, Zhao S, Fu Y, Zhu L. Homeobox protein 24 mediates the conversion of indole‐3‐butyric acid to indole‐3‐acetic acid to promote root hair elongation. New Phytol. 2021;232(5):2057–70. https://doi.org/10.1111/nph.
  25. 17719
  26. 21. Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol. 2023;43(5):734–52. https://doi.org/10.1080/07388551.2022.
  27. 2055995
  28. 22. Gomes G, Scortecci K. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biol. 2021;23(6):894–904. https://doi.org/10.1111/plb.13303
  29. 23. Khan MA, Wang Y, Muhammad B, Uddin S, Saeed A, Khan D, Ali M, Saeed S, Kui JZ. Morpho-physiological and phytohormonal changes during the induction of adventitious root development stimulated by exogenous IBA application in Magnolia biondii Pamp. Brazilian Journal of Biology. 2022;84:e255664. https://doi.org/10.1590/1519-
  30. 6984.255664
  31. 24. Heinzle J, Liu X, Tian Y, Kwatcho Kengdo S, Heinze B, Nirschi A, Borken W, Inselsbacher E, Wanek W, Schindlbacher A. Increase in fine root biomass enhances root exudation by long-term soil warming in a temperate forest. Frontiers in Forests and Global Change. 2023;6:1152142. https://doi.org/10.3389/ffgc.2023.1152142
  32. 25. Uzun A, Pinar H, Yilmaz S. Effects of different applications on rooting capacity of black elderberry cuttings. Curr Trends Nat Sci. 2022;11(22):35–38. https://doi.org/10.47068/ctns.2022.v11i22.004
  33. 26. El-Banna MF, Farag NB, Massoud HY, Kasem MM. Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiol Biochem. 2023;197:107639. https://doi.org/10.1016/j.plaphy.2023.107639
  34. 27. Soliman WS, Saad-Eldeen K, Gahory A-A. An investigation of indole butyric acid effects on the growth and development of dwarf bougainvillaea. Aswan Univ J Sci Technol. 2023;3(1):154–63. https://doi.org/10.21608/aujst.
  35. 2023.312914
  36. 28. Sheikh MA, Sundouri AS, Mir MA, Bhat SA, Beigh MA, Nazir N, Parray MA. Effect of IBA and NAA concentrations and types of media on rooting and survival of cuttings in fig (Ficus carica L.). The Pharma Innovation Journal. 2022;11(12):2779-84.
  37. 29. Natarajan A, Selvam D, Palaniappan K, Subbaiah Balamurali A, Perumal C, Durai R, Sadasivam S, Asokan A, Sivalingam R, Subiramaniyan A. Standardization of the Optimum Effects of Indole 3-Butyric Acid (IBA) to Control Root Knot Nematode, Meloidogyne enterolobii, in Guava (Psidium guajava L.). Molecules. 2023;28(4):1839. https://doi.org/10.3390/molecules28041839
  38. 30. Jebapriya GR, Somasundaram R. Responses of auxin derivatives on rooting and sprouting behaviour of Excoecaria agallocha L. stem cuttings. J Stress Physiol Biochem. 2021;17(1):120–28.
  39. 31. Jaiswal E, Tripathi V, Trivedi H, Kumar R. Influence of IBA and NAA on regeneration of stem cuttings of sweet lime (Citrus limettioides Tanaka). Prog Agric. 2023;23(2):191–97. https://doi.org/10.5958/0976-4615.2023.00027.3
  40. 32. Gnawali P, Gurung M, Kadel S, Bhantana S, Chand NB, Pathak R, Poudel PR. Vegetative Propagation of Eureka Seedless Lemon (Citrus limon L. Cv Eureka Seedless) Using Different Types of Stem Cutting and Concentrations of Indole-3-Butyric Acid in Winter. Nepalese Horticulture. 2022;16(1):81-90. https://doi.org/10.3126/nh.v16i1.44968
  41. 33. Rafiullah FI, Basit A, Ullah I, Sajid M, Shah ST, Ahmad I, Muhammad M, Ali I, Khan IA, Ahmad A, Shah AA. Vegetative growth and root development of Euonymus japonica cuttings is influenced by various concentrations of Indole Butyric Acid (IBA) and transplantation dates. Ann. Rom. Soc. Cell Biol. 2021;5:948-59.
  42. 34. Banik S, Dutta D. Membrane proteins in plant salinity stress perception, sensing and response. J Membr Biol. 2023;256(2):109–24. https://doi.org/10.1007/s00232-023-00279-9
  43. 35. Maurya P, Mukhim C, Prasad K, Majaw T, Kumar U, Agnihotri R, Kumar K. Influence of season, Indole 3-butyric acid and media on rooting and success of single leaf-bud cutting of lemon (Citrus limon Burm.) in Bihar. Scientist. 2022;1(3):459-69. https://doi.org/10.5281/zenodo.7135212
  44. 36. Upadhayay PK, Kharal S, Shrestha B. Effect of indole-butyric acid (IBA) and wounding on rooting ability and vegetative characteristics of apple rootstock cuttings under Nepal conditions. J Agric Sci Pract. 2020;5(4):184–92. https://doi.org/10.31248/JASP2020.220
  45. 37. Aryan S, Gulab G, Safi Z, Durani A, Raghib MG, Kakar K, Zahid T, Baber BM, Ahlawat YK, Moussa IM, Elansary HO. Enhancement of propagation using organic materials and growth hormone: A study on the effectiveness of growth and rooting of pomegranate cuttings. Horticulturae. 2023;9(9):999. https://doi.org/10.3390/horticulturae9090999
  46. 38. Ghangale T, Patil R, Ralebhat B, Patil O, Hinge A. Effect of IBA and cutting thickness on growth attributes of grape rootstocks (Vitis vinifera L.). Pharm Innov J. 2021;10(12):58–66.
  47. 39. Ghimire BK, Kim SH, Yu CY, Chung IM. Biochemical and physiological changes during early adventitious root formation in Chrysanthemum indicum Linné cuttings. Plants. 2022;11(11):1440. https://doi.org/10.3390/plants
  48. 11111440
  49. 40. Dawar K, Asif M, Irfan M, Mian IA, Khan B, Gul N, Fahad S, Jalal A, Danish S, Syed A, Elgorban AM. Evaluating the efficacy of activated carbon in minimizing the risk of heavy metals contamination in spinach for safe consumption. ACS omega. 2023;8(27):24323-31. https://doi.org/10.1021/acsomega.3c01573
  50. 41. Ebrahimi T, Piri K, Abdoli A, Tohidfar M. Effect of activated charcoal on in vitro propagation of Lythrum salicaria L. (Lythraceae). J Med Plants By Prod. 2024;13(2):293–301. https://doi.org/10.22034/jmpb.2023.362219.1554
  51. 42. Si L, Wang H, Xi Y, Wen Z, Yao B. Modeling for gas dissolution and diffusion in water-intrusion coal seam and its potential applications. Fuel. 2022;307:121786. https://doi.org/10.1016/j.fuel.2021.121786
  52. 43. Li H, Tan Z. Preparation of high water-retaining biochar and its mechanism of alleviating drought stress in the soil and plant system. Biochar. 2021;3(4):579–90. https://doi.org/10.1007/s42773-021-00107-0
  53. 44. He X, Liu S, Huang X, Yu F, Li Y, Li F, Liu K. Effects of sulfate on the photosynthetic physiology characteristics of Hydrocotyle vulgaris under zinc stress. Functional Plant Biology. 2023;50(9):724-35. https://doi.org/10.1071/FP23054
  54. 45. Al-Mayahi AMW. The effect of humic acid (HA) and zinc oxide nanoparticles (ZnO-NPs) on in vitro regeneration of date palm (Phoenix dactylifera L.) cv. Quntar. Plant Cell Tiss Org Cult. 2021;145:445–56. https://doi.org/10.1007/s11240-021-02020-7
  55. 46. Afzal M, Naeem H, Waqas M, Akhtar I, Alam S, Tehseen M. Effect of indole butyric acid and zinc sulphate in different media on rooting of olive cuttings. Asian J Soil Sci Plant Nutr. 2023;9(4):104–11. https://doi.org/10.9734/ajsspn/2023/v9i4196
  56. 47. Sourati R, Sharifi P, Poorghasemi M, Alves Vieira E, Seidavi A, Anjum NA, Sehar Z, Sofo A. Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. International Journal of Plant Biology. 2022;13(3):245-56. https://doi.org/10.3390/ijpb13030021
  57. 48. Cakmak I, Brown P, Colmenero-Flores JM, Husted S, Kutman BY, Nikolic M, Rengel Z, Schmidt SB, Zhao FJ. Micronutrients. InMarschner's mineral nutrition of plants 2023 Jan 1 (pp. 283-385). Academic Press. https://doi.org/
  58. 10.1016/B978-0-12-819773-8.00017-4
  59. 49. Campos EV, do ES Pereira A, Aleksieienko I, Do Carmo GC, Gohari G, Santaella C, Fraceto LF, Oliveira HC. Encapsulated plant growth regulators and associative microorganisms: Nature-based solutions to mitigate the effects of climate change on plants. Plant Science. 2023;331:111688. https://doi.org/10.1016/j.plantsci.2023.111688
  60. 50. Alizadeh S, Dumanoğlu H. The effects of zinc oxide nanoparticles loaded with IAA and IBA on in vitro rooting of apple microcuttings. Turk J Agric For. 2022;46(3):306–17. https://doi.org/10.55730/1300-011X.3004
  61. 51. Karakeçili A, Korpayev S, Dumanoğlu H, Alizadeh S. Synthesis of indole-3-acetic acid and indole-3-butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis. J Biotechnol. 2019;303:8–15. https://doi.org/10.1016/j.jbiotec.2019.07.004
  62. 52. Kumar A, Thakur N, Ingole A, Shah I, Srivastava A. Efficacy of different concentrations of IBA and NAA on growth of hardwood cuttings of fig (Ficus carica L.) cv. Dinkar. Environ Ecol. 2024;42(2B):867–70. https://doi.org/10.60151/envec/ZPDZ4394
  63. 53. Kumar V, Thakur D, Srivastava R, Kaur DP, Singh KK. Effect of different concentrations of IBA and types of stem cuttings on the rooting in sweet orange (Citrus sinensis L. Osbeck). Pharm Innov J. 2023;12(5):375–78.
  64. 54. 54.Khalil H-AM, Khalil M, Arisha H, El-Denary M. Effect of cultivars, auxins and activated charcoal on in vitro roots formation of strawberry plantlets. Zagazig J Agric Res. 2019;46(3):609–20. https://doi.org/10.21608/zjar.2019.40945
  65. 55. Martins JP, Wawrzyniak MK, Kalemba EM, Ley-López JM, Lira JM, Chmielarz P. In vitro rooting of Quercus robur, activated charcoal vs. exogenous auxin: a morphophysiological approach. Plant Cell, Tiss Organ Cult. 2024;156(1):24.
  66. https://doi.org/10.1007/s11240-023-02656-7

Downloads

Download data is not yet available.