Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Chemo-geographical variations in volatile profiles of Mentha longifolia (L.) populations from Iran

DOI
https://doi.org/10.14719/pst.6253
Submitted
22 November 2024
Published
17-04-2025
Versions

Abstract

Mint (Mentha) has been used in traditional medicine for centuries and is a key species in the Lamiaceae family, with seven varieties found in the Iranian flora. Despite its extensive use in conventional medicine, limited research has focused on the detailed chemical profiling of this species in specific ecological contexts. This study investigates the essential oil composition of M. longifolia ecotypes naturally growing in the northwest region of Iran, highlighting the species' chemical diversity and its potential applications in pharmaceutical and agricultural industries. Using high-performance liquid chromatography (HPLC), 20 compounds were identified, accounting for 92.82 % to 100 % of the total oil composition. The main compounds were polegune (7.18-52.23 %), menthone (10.18-32.54 %) and piperitenone oxide (0.77-16.01 %). Additionally, oleanolic acid and ursolic acid, two isomeric triterpenes with recognized therapeutic potential, were quantified in the ecotype samples, with concentrations ranging from 0.17-8.07 mg/g and 0.24-2.94 mg/ g, respectively. At a 50 % similarity, the essential oil properties were classified into two sub-clusters: Cluster I, which mainly consisted of six ecotypes and Cluster II, which included two. Cluster analysis revealed two subgroups of ecotypes based on their essential oil profiles, suggesting environmental factors may influence the chemical composition. The findings underscore the significant variation in bioactive compounds among M. longifolia ecotypes and provide valuable insights for selecting and cultivating chemotypes with enhanced medicinal or aromatic properties. This study contributes to the growing body of knowledge on M. longifolia and supports its broader application in natural product development and sustainable agriculture.

References

  1. Bräuchler C, Meimberg H, Heubl G. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)-taxonomy, biogeography and conflicts. Mole Phylogene Evol. 2010;55:501–23. https://doi.org/10.1016/j.ympev.2010.01.016
  2. Brickell C, Zuk J. A-Z encyclopedia of garden plants. Delhi: DK Publishing; 1997.
  3. Bouchra C, Achouri M, Hassani LI. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharma. 2003;89:165–69. https://doi.org/10.1016/S0378–8741(03)00275–7
  4. Mokaberinejad R, Zafarghandi N, Bioos S. Mentha longifolia syrup in secondary amenorrhea: a double-blind, placebo-controlled, randomized trial. DARU J Pharmaceu Sci. 2012;20:97. https://doi.org/10.1186/2008–2231–20–97
  5. Džami? V, Sokovi? AM, Risti? MD. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Botanica Serbica. 2010;34:57–61. https://doi.org/10.2298/CICEQ110919017S
  6. Hussain AI. Characterization and biological activities of essential oils of some species of Lamiaceae. PhD [Thesis]. Faisalabad, Pakistan: Faculty of Sciences, University of Agriculture; 2009.
  7. Eftekhari A, Khusro A, Ahmadian E. Phytochemical and nutrapharmaceutical attributes of Mentha spp.: A comprehensive review. Arab J Chem. 2021;14(5):11–13. https://doi.org/10.1016/j.arabjc.2021.103106
  8. Safayhi H, Sailer ER. Anti-inflammatory actions of pentacyclic triterpenes. Planta Medica. 1997;63:487–93. https://doi.org/10.1055/s–2006–957748
  9. Liu J, Liu Y, Klaassen CD. Protective effect of oleanolic acid against chemical-induced acute necrotic liver injury in mice. Acta Pharma Sinica. 1995;16:97–102. PMID: 7597924
  10. Ovesna Z, Vachalkova A, Horvathova K, Tothova D. Pentacyclic triterpenoic acids: new chemoprotective compounds. Neoplasma. 2004;51:327–33. PMID: 15640935
  11. Moon HK, Smets E, Huysmans S. Phylogeny of tribe Mentheae (Lamiaceae): The story of molecules and micromorphological characters. Taxon. 2010;59(4):1065-76. http://www.jstor.org/stable/20773977
  12. Christenhusz MJ, Fay MF, Chase MW. Plants of the world: an illustrated encyclopedia of vascular plants. Chicago: University of Chicago Press; 2020. ISBN: 9781842466346
  13. El Karkouri J, Bouhrim M, Al Kamaly OM, Mechchate H, Kchibale A, Adadi I, et al. Chemical composition, antibacterial and antifungal activity of the essential oil from Cistus ladanifer L. Plants. 2021;30;10(10):2068. https://doi.org/10.3390/plants10102068
  14. Farzaei MH, Bahramsoltani R, Ghobadi A, Farzaei F, Najafi F. Pharmacological activity of Mentha longifolia and its phytoconstituents. J Trad Chin Med. 2017;37(5):710–20. https://doi.org/10.1016/S0254-6272(17)30327-8
  15. Sokovi? MD, Vukojevi? J, Marin PD, Brki? DD, Vajs V, Van Griensven LJ. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14(1):238–49. https://doi.org/10.3390/molecules14010238
  16. Nieto G. Biological activities of three essential oils of the Lamiaceae family. Medicines. 2017;4(3):63. https://doi.org/10.3390/medicines4030063
  17. Anwar F, Abbas A, Mehmood T, Gilani AH, Rehman NU. Mentha: A genus rich in vital nutra-pharmaceuticals-A review. Phytotherapy Res. 2019;33(10):2548–70. DOI: https://doi.org/10.1002/ptr.6423
  18. Mogosan C, Vostinaru O, Oprean R, Heghes C, Filip L, Balica G, Moldovan RI. A comparative analysis of the chemical composition, anti-inflammatory and antinociceptive effects of the essential oils from three species of Mentha cultivated in Romania. Molecules. 2017;22(2):263. https://doi.org/10.3390/molecules22020263
  19. Sfaxi A, Tavaszi–Sárosi S, Flórián K, Patonay K, Radácsi P, Juhász Á. Comparative evaluation of different mint species based on their in vitro antioxidant and antibacterial effect. Plants. 2025;14(1):105. https://doi.org/10.3390/plants14010105
  20. Xu C, Wang B, Pu Y, Tao J, Zhang T. Techniques for the analysis of pentacyclic triterpenoids in medicinal plants. J Separ Sci. 2018;41(1):6–19. doi: 10.1002/jssc.201700201
  21. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 1949;24:1. https://pubmed.ncbi.nlm.nih.gov/16654194
  22. Krizek DT, Kramer GF, Upadhyaya A. UV–B response of cucumber seedlings grown under metal halide and high–pressure sodium/deluxe lamps. Physiol Plantarum. 1993;88:350–58. https://doi.org/10.1111/j.1399–3054.1993.tb05509.x
  23. Seevers P, Daly J. Studies on wheat stem rust resistance controlled at the Sr6 locus. I. The role of phenolic compounds. Phytopatho. 1970;60:1322–28. https://doi.org/10.1094/Phyto–60–1322
  24. Abbaszadeh B, Valadabadi SA, Farahani HA. Studying of essential oil variations in leaves of Mentha species. Af J Pl Sci. 2009;3:217–21. Retrieved from: https://academicjournals.org/app/webroot/article/article1381409529_Abbaszadeh%20et%20al.pdf
  25. Traore EH, Sall SyD, Drame B. Guide maraîchage au Sénégal: carotte, oignon, haricot vert, tomate, chou, pomme de terre et bissap. Français. 2015. Retrieved from: https://publications.cirad.fr/une_notice.php?dk=580006
  26. Erta? A, Gören A, Ha?imi N. Phytochemical and biological investigations on Mentha longifolia subsp. noena. Planta Med. 2012;78:PI123. https://doi.org/10.1055/s–0032–1320810
  27. Sharopov FS, Sulaimonova VA, Setzer WN. Essential oil composition of Mentha longifolia from wild populations growing in Tajikistan. J Med Active Pl. 2012;1:76–84. https://doi.org/10.7275/r5736ntn
  28. Mahmodi R, Tajik H, Farshid A. Phytochemical properties of Mentha longifolia L. essential oil and its antimicrobial effects on Staphylococcus aureus. Armaghane Dan Bimon J. 2011;16:400–12. http://armaghanj.yums.ac.ir/article-1-307-en.html
  29. Mardani S, Nasri H, Rafieian–Kopaei M. Herbal medicine and diabetic kidney disease. J Nephropharmacol.2013;2:1–2. https://jnephropharmacology.com/Article/NPJ_20151008122857?utm_source=chatgpt.com
  30. Shazdehahmadi F, Pournajaf A, Kazemi S, Ghasempour M. Determining the antibacterial effect of Mentha longifolia essential oil on cariogenic bacteria and its compounds: an in vitro study. J Dent (Shiraz). 2023 Mar;24(1 Suppl):146–54. doi: 10.30476/dentjods. 2022.92992.1688. PMID: 37051493; PMCID: PMC10084559.
  31. Shahdadi F, Faryabi M, Khan H, Sardoei AS, Fazeli-Nasab B, Goh BH, Goh KW, Tan CS. Mentha longifolia Essential Oil and Pulegone in Edible Coatings of Alginate and Chitosan: Effects on Pathogenic Bacteria in Lactic Cheese. Molecules. 2023; 28(11):4554. https://doi.org/10.3390/molecules28114554
  32. Mkaddem M, Bouajila J, Ennajar M. Chemical composition and antimicrobial and antioxidant activities of (Mentha longifolia L. and viridis) essential oils. J Food Sci. 2009;74:358–63. https://doi.org/10.1111/j.1750–3841.2009.01272.x
  33. Oyedeji A, Afolayan A. Chemical composition and antibacterial activity of the essential oil isolated from South African Mentha longifolia (L.) L. subsp. capensis (Thunb.) Briq. J Ess Oil Res. 2006;18:94–99. https://doi.org/10.1080/13880200590928843
  34. Yadav RS, Kumar S, Dikshit A. Antifungal properties of essential oil of Mentha spicata (I) L. var. MSS–5. Ind J Crop Sci. 2006;1:197–200. https://api.semanticscholar.org/CorpusID:87909965
  35. Zekri N, Elazzouzi H, Ailli A, Gouruch AA, Radi FZ, El Belghiti MA, Zair T, Nieto G, Centeno JA, Lorenzo JM. Physicochemical Characterization and Antioxidant Properties of Essential Oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan Middle-Atlas. Foods. 2023;12(4):760. https://doi.org/10.3390/foods12040760
  36. Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007;103(4):1449–56. https://doi.org/10.1016/j.foodchem.2006.10.061.
  37. Al–Bayati FA. Isolation and identification of antimicrobial compounds from Mentha longifolia L. leaves grown wild in Iraq. Ann Clin Microbio Antimicrob. 2009;8:20. https://doi.org/10.1186/1476–0711–8–20
  38. Bekhradi F, Luna M, Delshad M. Effect of deficit irrigation on the postharvest quality of different genotypes of basil including purple and green Iranian cultivars and a Genovese variety. Posthar Bio Techn. 2015;100:127–35. https://doi.org/10.1016/j.postharvbio.2014.09.017
  39. Loranty A, Rembia?kowska E, Rosa EA. Identification, quantification and availability of carotenoids and chlorophylls in fruit, herb and medicinal teas. J Food Comp Anal. 2010;23:432–41. https://doi.org/10.1016/j.jfca.2010.01.007
  40. Straumite E, Kruma Z, Galoburda R. Pigments in mint leaves and stems. Agron Res. 2015;13:1104–11. Retrieved from: https://agronomy.emu.ee/vol134/13_4_24_B5.pdf
  41. Bahadori MB, Zengin G, Bahadori S. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int J Food Prop. 2018;21:183–93. https://doi.org/10.1080/10942912.2018.1440238
  42. Zaidi S, Dahiya P. In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. Int Food Res J. 2015;22:2440–48. Retrieved from: https://api.semanticscholar.org/CorpusID:31119129
  43. Stanisavljevi? DM, Stoji?evi? SS, ?or?evi? SM. Antioxidant activity, the content of total phenols and flavonoids in ethanol extracts of Mentha longifolia (L.) Hudson dried by different techniques. Chem Ind Chem Engin Quart. 2012;18:411–20. https://doi.org/10.2298/ciceq110919017s
  44. Adham AN. Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Ocimum basilicum. J Pharma Phytochem. 2015;3:130–39. https://dx.doi.org/10.22271/phyto
  45. Elansary HO, Mahmoud EA. Egyptian herbal tea infusions' antioxidants and their antiproliferative and cytotoxic activities against cancer cells. Nat Prod Res. 2015;29:474–79. https://doi.org/10.1080/14786419.2014.951354
  46. Hajlaoui H, Snoussi M, Ben Jannet H, Mighri Z, Bakhrouf A. Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp. longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid). Ann Microbio. 2008;58(3):513–20. https://doi.org/10.1007/BF03175551.
  47. Jiménez–Arellanes A, Meckes M, Alvarez V. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement Altern Med. 2013;13:258. https://doi.org/10.1186/1472-6882-13-258
  48. Bardaweel SK, Bakchiche B, Al–Salamat HA, et al. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from the Algerian Saharan Atlas. BMC Comp Alterna Medi. 2018;18:201. https://doi.org/10.1186/s12906–018–2274–x
  49. Bone K, Mills S. Principles and practice of phytotherapy: Modern herbal medicine. 2nd ed. Edinburgh: Churchill Livingstone; 2013. ISBN: 0702052973, 9780702052972
  50. Snoussi M, Noumi E, Trabelsi N, et al. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules. 2015;20(8):14402–24. https://doi.org/10.3390/molecules200814402
  51. Mamadalieva NZ, Hussain H, Xiao J. Recent advances in genus Mentha: Phytochemistry, antimicrobial effects and food applications. Food Front. 2020;43558. https://doi.org/10.1002/fft2.53
  52. Marzouk MM, Hussein SR, Elkhateeb A, El-shabrawy M, AbdelHameed ES, Kawashty SA. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J Appl Pharma Sci. 2018;8(08):116–22. https://doi.org/10.7324/JAPS.2018.8816

Downloads

Download data is not yet available.