Effects of gamma irradiation on the alkaloid content in seeds of Datura stramonium and the radiosensitivity of derived seedlings
DOI:
https://doi.org/10.14719/pst.2019.6.4.634Keywords:
Alkaloids, Datura, In vitro culture, Mutation, RadiosensitivityAbstract
Tropane alkaloids are a group of secondary metabolites occurring naturally in Solanaceae family as Atropa belladona, Datura stramonium, Mandragora officinalis, and Hyoscyamus niger. These molecules have valuable therapeutic applications, for example, atropine and hyoscyamine are utilized as antimuscarinic besides being stomach and intestinal diseases drugs. Plants of the Solanaceae family can provide a natural yet less expensive source of these compounds. Hitherto, in order to emphasize these metabolites biosynthesis, D. stramonium seeds were irradiated using a cobalt-60 source of gamma rays of 5 to 80 Gy and germinated in vitro on MS medium in growth controlled chamber. Mutagenesis of D. stramonium seeds was attempted aiming at obtaining plants from in vitro source that are genetically variable for enhancing the biosynthesis of secondary metabolites, namely alkaloids. Results indicated that D. stramonium seeds exhibited a good radiosensitivity and the mutagen damage index GR (30-50) for D. stramonium was determined at 80 Gy. The Characterization of alkaloids (Atropine and hyoscyamine) was done by infrared spectroscopy which showed that alkaloids content of the irradiated seeds is altered by irradiation as the reference bands were not found with all doses used. In addition, seedlings grown from irradiated in vitro seeds exhibited remarkable morphological variations that varied based on the employed dose of gamma rays. These findings permitted the selection of the optimal irradiation dose (80 Gy) to induce mutations that are likely to prompt changes at genetic and metabolic level of the targeted alkaloids.
Downloads
References
2. Butnariu M. An analysis of Sorghum halepense's behavior in presence of tropane alkaloids from Datura stramonium extracts. Chem Cent J. 2012;6-75. https://doi.org/10.1186/1752-153X-6-75
3. Brown JH. Atropine, scopolamine, and related antimuscarinic drugs. In: Goodman GA, editors. The pharmacological basis of therapeutiesrall TW Nies AS. 8nd ed. Taylor p Goodman and Gilman's, Pergamon. New York; 1990. p. 150-65.
4. Medical and Pharmacy Editor: John P. Cunha, DO, FACOEP. Atropine VS. Adrenalin. Available from: https://www.rxlist.com/atropine_vs_adrenalin/drugs-condition.htm.2005-2019
5. Hopkins WG. Physiologie végétale. De Boeck Université (Bruxelles); 2003.
6. Verdrager J. Ces médicaments qui nous viennent des plantes ou les plantes médicinales dans les traitements modernes. Maloine SA (France); 1978.
7. Grynkiewicz G, Gadzikowska M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep.2008;60(4):439-63.
8. Toivonen L. Utilization of hairy root cultures for production of secondary metabolites. Biotechnol. Prog. 1993; 9112-20. https://doi.org/10.1021/bp00019a002
9. Bourgaud F, Gravot A, Milesis S, Gatier E. Production of plant secondary metabolites. A historical perspective. Plant Sci. 2001;(5):839-51. https://doi.org/10.1016/S0168-9452(01)00490-3
10. Dessouky MM, Taha HS, El-Bahr MK. Enhancement of alkaloids production in suspension cultures of Datura stramonium L. and Datura metel L. Arab J Biotech. 2001;4 (2):271-78.
11. Kinsara AM, Seif El-Nasr MM.Organization and alkaloid production in tissue culture of Datura innoxia Mill. JKAU:Sci. 1994;6:5-15. https://doi.org/10.4197/Sci.6-1.1
12. Makhzoum A, Petit-Paly G, St-Pierre B, Bernards MA. Functional analysis of the DAT gene promoter using transient Catharanthus roseus and stable Nicotiana tabacum transformation systems. Plant Cell Rep. 2011;30:1173-82. https://doi.org/10.1007/s00299-011-1025-y
13. Makhzoum A, Bjelica A, Petit-Paly G, Bernards MA. Novel plant regeneration and transient gene expression in Catharanthus roseus. The All Results Journals: Biol. 2015;6:1-9.
14. Habibi P, Grossi MF, Makhzoum A, Malik S, da silva ALL, Hefferon KL, Soccol CR. Bioengineering hairy roots: Phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In: Lichtfouse E, editors Sustainable Agriculture reviews, Springer Nature;2017. p. 213-51. https://doi.org/10.1007/978-3-319-48006-0_7
15. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Hairyroot research: Recent scenario and exciting prospects. Current Opinion in Plant Biology. 2006;9:341-46. https://doi.org/10.1016/j.pbi.2006.03.008
16. Kim y, Wyslouzil BE, Weathers PJ. Secondary metabolism of hairyroot culture in Bioreactors. In vitro cellular&Developmental- Biology Plant. 2002;38:1-10. https://doi.org/10.1079/IVP2001243
17. Lanoue A, Shakourzadeh K, Marison I, Laberche JC, Christen P, Sangwan-Norrel B, et al. Occurrence of circadian rhythm in hairyroot cultures grown under controlled conditions. Biotechnology Bioeng 2004;88:722-29. https://doi.org/10.1002/bit.20268
18. Flores HE, Medina-Bolivar F. Root culture and plant natural products: «unearthing» the hidden half of plant metabolism. Plant Tissue culture and Biotechnology. 1995;(1,2): 59-74.
19. Souret FF, Kim Y, Wyslouzil BE, Wobbe KK et Weathers PJ. Scale-up of Artimisia annua L. Hairyroot cultures produces complex patterns of terpinoid gene expression. Biotechnology and Bioengineering. 2003;83(6):653-69. https://doi.org/10.1002/bit.10711
20. Zhi-Bi Hu, Min Du. Hairyroots and its application in plant genetic engineering. Journal of Integrative Plant Biology. 2006;48(2):121-27. https://doi.org/10.1111/j.1744-7909.2006.00121.x
21. Makhzoum A, Sharma P, Bernards MA, Trémouillaux-Guiller J. Hairy roots: an ideal platform for transgenic plant production and other promising applications. In: Phytochemicals, Plant Growth, and the Environment. Springer, New York; 2013. p. 95-142. https://doi.org/10.1007/978-1-4614-4066-6_6
22. Makhzoum A, Benyammi R, Moustafa K, Trémouillaux-Guiller J. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs. 2014;28(1):45-159. https://doi.org/10.1007/s40259-013-0062-1
23. Malik S, Andrade SA, Mirjalili MH, Arroo RR, Bonfill M, Mazzafera P. Biotechnological Approaches for Bioremediation: In Vitro Hairy Root Culture. In: Sumita Jha, editors. Transgenesis and Secondary metabolism, Springer International Publishing; 2017; p. 597-619. https://doi.org/10.1007/978-3-319-28669-3_28
24. Harfi B, Khelifi-Slaoui M, Bekhouche M, Benyammi R, et al. Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium. In Vitro Cell Dev Biol-Plant. 2016;52:92-98. https://doi.org/10.1007/s11627-015-9725-6
25. Belabbassi O, Khelifi-Slaoui M, Zaoui D, Benyammi R et al. Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium. Base [Internet]. 2016 [cited 2015 Dec 17]. Available from http://popups.ulg.ac.be/1780-4507/index.php?id=13164
26. Benyammi R, Paris C, Khelifi-Slaoui M, Zaoui D, Belabbassi O et al. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharm Biol. 2016;54:2033-43. https://doi.org/10.3109/13880209.2016.1140213
27. Harfi B. Induction de chevelus racinaires par Agrobacterium rhizogenes chez Datura sp. Essai d’optimisation de la production d’alcaloïdes. Thèse Magistère ENSA, El Harrach Alger; 2009.
28. Amdoun R. Optimisation de la production par voie biotechnologique des alcaloïdes tropaniques à partir de chevelus racinaires de Datura stramonium L. Approche par modélisation mathématique. Thèse Doc Sci ENSA, El Harrach Alger; 2010.
29. Chung BY, Lee YB, Baek MH, Kim JH, Wi SG, Kim JS. Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiation Phys Chem. 2006; 75:1018-23. https://doi.org/10.1016/j.radphyschem.2005.11.001
30. Khelifi-Slaoui M, Rezine MR, Amroun S, Amdoun R, Khelifi L. Embryons somatiques et bourgeons néoformés induits sur explants issus de vitrosemis de Datura stramonium L. d’origine algérienne. In: Khelifi L, éditeur. Actes du séminaire international sur l’amélioration des productions végétales, Alger; 2005. p 114-18.
31. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
32. Gogebashvili M, Ivanishvili N, FKhaladze L, Popiashvili N. The influence of gamma-irradiation on the activity of alkaloids biosynthesis in cultural callus tissues. Radiation studies. Georgian Research Institute for Scientific Technical Information; 2002.
33. Gaul H. Mutageneffects in the first generation after seeds treatment. In: Welsh C.N, Micke A, editors. Manual on Mutation Breeding, 2nd ed. 119 IAEA, Technical Reports Series. Vienna; 1977. p. 87-91.
34. Moffat AC, Osselton MD, Widdop B, Watts J. Clarkc’s analysis of drugs and poisons. 4nd ed. Pharmaceutical Press. London; 2011.
35. Jean FI. Analyse de produits naturels de Taxus canadensis. Thèse de doctorat, Québec CFFL Canada; 1992. https://doi.org/10.1522/1474504
36. Naumann A, Kurtze L, Krähmer A, Hagels H, Schulz H. Discrimination of Solanaceae Taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy. Planta Med. 2014; 80:1315-20. https://doi.org/10.1055/s-0034-1383046
37. Kim JB, Kim SH, Ha BK, Kang SY, Jang CS, Seo YW, et al. Differentially expressed genes in response to gamma-irradiation during the vegetative stage in Arabidopsis thaliana. Mol Biol Rep. 2014;41:2229-41. https://doi.org/10.1007/s11033-014-3074-0
38. Kobayashi JK, Iwabuchi K, Miyagawa E, Sonoda K et al. Current topics in DNA double-strand break repair. J Radiat. Res. 2008;49:93-103. https://doi.org/10.1269/jrr.07130
39. Dedieu A, Sahinovic E, Guérin P, Blanchard L, Fochesato S, Meunir B et al. Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation. Proteome Sci. 2013;11:3. https://doi.org/10.1186/1477-5956-11-3
40. Kovács E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron. 2002;33:199-210. https://doi.org/10.1016/S0968-4328(01)00012-9
41. Nakweti RK, Ndiku SL, Sinou V, Luyeye FL, Fundu TM et al. Effects of gamma irradiation on seeds germination, plantlets growth and in vitro antimalarial activity of Phyllanthus odontadenium M?l Arg. American Journal of Experimental Agriculture. 2014;4:1435-57. https://doi.org/10.9734/AJEA/2014/8631
42. Kouchebagh SB, Mirshekari B. Invigoration of Datura stramonium seeds by magnetic field treatment. Ind J fund appl life sci. 2015;5:164-68.
43. Thapa CB. Effect of Acute Exposure of Gamma Rays on Seed Germination and Seedling Growth of Pinus kesiya Gord and P. wallichiana A.B. Jacks. Our Nature, 2004;2:13-17. https://doi.org/10.3126/on.v2i1.318
44. Melki M, Dahmani T. Gamma irradiation effects on Durum wheat (Triticum durum.Desf) under various conditions.J biol Sci. 2009;12:1531-34. https://doi.org/10.3923/pjbs.2009.1531.1534
45. Bilquez A, Martin J. Différence variétale de sensibilité aux rayons x chez l’arachide. Journ d’Agric. Trop et de botanique appliquée. 1961;8:30-43. https://doi.org/10.3406/jatba.1961.6894
46. Kiong ALP, Lai AG, Hussein S, Harun AR. Physiological responses of Orthosiphon stamineus plants to gamma irradiation. Am-Eurasian J Sustain. Agric. 2008;2:135-49.
47. Bilquez A. Résultats d’un essai de stimulation de croissance chez le Radis par application de faible doses de rayons x aux graines avant le semis. Journ d’AgricTrop et de botanique appliquée. 1958;5:365-71. https://doi.org/10.3406/jatba.1958.2471
48. Seung CW, Byung YG, Jea S, Jin HK, Myung B, Hwa, JW Lee, et al. Effects of gamma radiation on morphological changes and biological responses in plants. Micron. 2006;38:553-64. https://doi.org/10.1016/j.micron.2006.11.002
49. Badr HM, Alsadon AA, Al Harbi AR. Stimulation effects of gamma radiation on growth and yield of two tomato (Lycopersicum esculentum Mill) cultivars. Agri Sci. 1997;9:277-86.
50. Rajput MA, Siddiqui KA. Induced mutation breeding studies for soybean improvement. In: Induced mutations for improvement of grain legume production. Proceedings of 3rd Research Co-ordination Meeting; 1983 May 28-1 June; FAO/IAEA division, Vienna; 1983. p. 165-70.
51. Abdul M, Asif U, Habib A, Zahir M. Gamma irradiation effects on some growth parameters of Lepidum sativum L. J Ag & Bio Sci. 2010;5:39-42.
52. Amjad M, Anjum M. Effect of gamma radiation on onion seed variability, germination potential, seedling growth and morphology. Agri Sci. 2002;39:202-09.
53. Hameed A, Shah TM, Atta BM, Haq MA, Sayed H. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in Desi and Kabuli chickpea. Pak J Bot. 2008;40:1033-41.
54. Alikamano?lu S. Efficiency of the gamma irradiation in the induction of in vitro somatic mutations. Journal of Cell and Molecular Biology. 2002;1:19-24.
55. Brunner H. Radiation induced mutations for plant selection. App Radiat Isot. 1995; 46:589-94. https://doi.org/10.1016/0969-8043(95)00096-8
56. Kamra OP, Brunner H. Chemical mutagens. Doses. In: Welsh CN, Micke A, editors. Manual on Mutation Breeding, 2nd ed. 119 IAEA, Technical Reports Series. Vienna; 1977. p. 66-69.
57. Benslimani N. Etude du comportement de l’arachide (Arachis hypogaea L.) issue de graines soumises à des traitements mutagènes (rayon gamma, Cobalt-60). Thèse magistère ENSA, El Harrach Alger; 2003.
58. Mokobia C, Anomohanran O. The effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops. J Radiol Prot. 2005;25:181-88. https://doi.org/10.1088/0952-4746/25/2/006
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).