Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Spilanthes acmella extract alleviates cisplatin-induced nephrotoxicity and DNA damage in human embryonic kidney cells

DOI
https://doi.org/10.14719/pst.6413
Submitted
29 November 2024
Published
09-08-2025 — Updated on 22-08-2025
Versions

Abstract

Kidney dysfunction has a devastating effect on health and quality of life, as it is one of the vital organs responsible for maintaining body homeostasis. Chemotherapeutic agents, especially anticancer medications, induce significant toxicity, resulting in renal dysfunction and irreversible kidney damage. This has led to a renewed focus on finding safer, more effective alternatives, such as pharmaceuticals derived from natural sources. The present study investigates the protective effects of ethyl acetate extract of Spilanthes acmella (EASA) against cisplatin-induced nephrotoxicity in human embryonic kidney (HEK293) cells. Preliminary phytochemical screening revealed Alkaloids and phenols as the predominant constituents. A neutral red uptake assay determined the non-toxic concentration of S. acmella and the combinatorial treatment with EASA restored cell viability to 72 %, compared to 47 % in cisplatin treated cells. The antioxidant enzymes SOD and catalase were shown to be diminished by cisplatin, indicating oxidative damage, accompanied by an increase in lipid peroxidation products. EASA significantly elevated enzyme levels and reduced membrane peroxides. Reactive oxygen species production was shown to be reduced in groups co-treated with EASA, as assessed by DCFDA fluorimetry studies. The comet assay also showed a reduction in cisplatin-induced DNA damage following EASA co-treatment. These findings demonstrate that EASA may mitigate the oxidative stress generated by cisplatin, thereby preventing oxidative renal injury. 

References

  1. 1. Lauren ET, Melanie SJ. Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption. CurrOpinToxicol. 2022;(20):31:100344. https://doi: 10.1016/j.cotox.2022.03.005
  2. 2. Santos MLC, De Brito BB, Da Silva FAF, Botelho ACDS, De Melo FF. Nephrotoxicity in cancer treatment: An overview. World J ClinOncol. 2020;11(4):190–204. https://doi.org/10.5306/wjco.v11.i4.190
  3. 3. Franzin R, Stasi A, De Palma G, Picerno A, Curci C, Sebastiano S, et al. Human adult renal progenitor cells prevent cisplatin-nephrotoxicity by inducing CYP1B1 Overexpression and miR-27b-3p down-regulation through extracellular vesicles. Cells. 2023;12(12):1655. https://doi.org/10.3390/cells12121655
  4. 4. Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2022;19(1):53–72. https://doi.org/10.1038/s41581-022-00631-7
  5. 5. Hu Y, Yang C, Amorim T, Maqbool M, Lin J, Li C, et al. Cisplatin-mediated upregulation of APE2 Binding to MYH9 provokes mitochondrial fragmentation and acute kidney injury. Cancer Res. 2020;81(3):713–23. https://doi.org/10.
  6. 1158/0008-5472.can-20-1010
  7. 6. Patschan D, Patschan S, Matyukhin I, Hoffmeister M, Lauxmann M, Ritter O, et al. Metabolomics in acute kidney injury: The experimental perspective. J Clin Med Res. 2023;15(6):283–91. https://doi.org/10.14740/jocmr4913
  8. 7. Majolo F, De Oliveira BDLK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196–207. https://
  9. doi.org/10.1016/j.phytol.2019.04.003
  10. 8. Kumar A, Kumar M, Jose A, Tomer V, Oz E, et al. Major Phytochemicals: Recent advances in health benefits and extraction methods. Molecules. 2023;28(2):887. https://doi.org/10.3390/molecules28020887
  11. 9. Chaachouay N, Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates. 2024;3(1):184–207. https://doi.org/10.3390/ddc3010011
  12. 10. Tienda-Vázquez MA, Morreeuw ZP, Sosa-Hernández JE, Cardador-Martínez A, Sabath E, Melchor-Martínez EM, et al. Nephroprotective Plants: A review on the use in pre-renal and post-renal diseases. Plants. 2022;11(6):818. https://doi.org/10.3390/plants11060818
  13. 11. Van S, Willis JC. A dictionary of the flowering plants and ferns - Biodiversity Heritage Library. https://www.biodiversitylibrary.org/bibliography/1428
  14. 12. Rahim RA, Jayusman PA, Muhammad N, Mohamed N, Lim V, Ahmad NH, et al. Potential antioxidant and anti-inflammatory effects of Spilanthesacmella and its health beneficial effects: A Review. Int J EnvironRes Public Health. 2021;18(7):3532. https://doi.org/10.3390/ijerph18073532
  15. 13. Paulraj J, Govindarajan R, Palpu P. The Genus SpilanthesEthnopharmacology, phytochemistry, and pharmacological properties: A Review. AdvPharmacol Sci. 2013;2013:1–22. https://doi.org/10.1155/2013/510298
  16. 14. Ramsewak R. Bioactive N-isobutylamides from the flower buds of Spilanthesacmella.Phytochemistry. 1999;51(6):729–32. https://doi.org/10.1016/S0031-9422(99)00101-6
  17. 15. Jalil MAA, Shuid AN, Muhammad N. Role of medicinal plants and natural products on osteoporotic fracture healing. Evid Based Complement Alternat Med. 2012;2012:1–7. https://doi.org/10.1155/2012/714512
  18. 16. Ruchita J, Dayanand G, Jibhakate R, Gogle D. Phytochemical study of SpilanthesacmellaL. (murr.) - a medicinal herb. Int J Res BiosciAgric Technol. 2018;III(VI):120–24. https://ijrbat.in/upload_papers/2812201801511727. %20Ruchita%20Jibhakate.pdf
  19. 17. Arif M, Juyal D, Joshi A. A review on pharmacognostic and phytochemical study of a plant SpilanthesacmellaMurr. Pharma Innov. 2017;6(5):172–77.
  20. 18. Sreevidya N, Mehrotra S. Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. J AOAC Int. 2003;86(6):1124–27. https://doi.org/10.1093/jaoac/86.6.1124
  21. 19. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87. https://doi.org/10.1016/0003-2697(71)90370-8
  22. 20. Morales M, Munné-Bosch S. Malondialdehyde assays in higher plants. In: ROS signalling in plants: Methods in molecular biology. New York: Springer; 2024. p.79–100.https://doi.org/10.1007/978-1-0716-3826-2_6
  23. 21. Ogata M, Takahara S. Paper electrophoretic studies on the catalase protein in acatalasemic blood extract (Stage 3 by Herbert-Pinsent). Proc Jpn Acad. 1962:38(7):361–64. https://doi.org/10.2183/pjab1945.38.361
  24. 22. Anna F, Meera NH, Albert CMO, Sri Lekha T, Alberto O, Agnes BF, et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat Rev Nephrol. 2024;20:473–85. https://doi.org/10.1038/s415
  25. 81-024-00820-6
  26. 23. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: Approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59. https://doi.org/10.1038/sj.ki.5002343
  27. 24. Barnett LMA, Cummings BS. Nephrotoxicity and renal pathophysiology: A contemporary perspective. Toxicol Sci. 2018;164(2):379–90. https://doi.org/10.1093/toxsci/kfy159
  28. 25. Basist P, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, et al. Potential nephroprotective phytochemicals: Mechanism and future prospects. J Ethnopharmacol. 2021;283:114743. https://doi.org/10.1016/j.jep.2021.114743
  29. 26. Dubey S, Maity S, Singh M, Saraf SA, Saha S. Phytochemistry, pharmacology and toxicology of Spilanthesacmella: A Review. AdvPharmacolPharm Sci. 2013;2013:1–9. https://doi.org/10.1155/2013/423750
  30. 27. Baues M, Klinkhammer BM, Ehling J, Gremse F, Van Zandvoort MAMJ, Reutelingsperger CPM, et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo. Kidney Int J. 2019;97(3):609–14. https://doi.org/
  31. 10.1016/j.kint.2019.08.029
  32. 28. Rashid NA, Halim SASA, Teoh SL, Budin SB, Hussan F, Ridzuan NRA, et al. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother. 2021;144:112328. https://doi.org/10.1016/j.biopha.2021.112328
  33. 29. Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol. 2023;19(4):229–43. https://doi.org/10.1038/s41581-022-00671-z
  34. 30. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025

Downloads

Download data is not yet available.