Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Rootstock mediated enhancement of abiotic and biotic stress tolerance in acid lime (Citrus aurantiifolia)

DOI
https://doi.org/10.14719/pst.6466
Submitted
2 December 2024
Published
05-03-2025 — Updated on 01-04-2025
Versions

Abstract

The study aimed to evaluate the performance of different rootstocks for acid lime (Citrus aurantiifolia) under salinity and nematode stress, focusing on their impact on plant growth and biochemical parameters. Grafted combinations involving acid lime (PKM 1) scions with rangpur lime and wood apple rootstocks were tested for salinity tolerance and resistance to Tylenchulus semipenetrans. The study, conducted from 2023 to 2024 at Tamil Nadu Agricultural University, HC & RI, Coimbatore, Tamil Nadu, utilized varying sodium chloride (NaCl) concentrations to simulate salinity stress and nematode inoculation for biotic stress evaluation. Results indicated that the R5 combination (acid lime PKM 1 scion grafted onto rangpur lime) exhibited the highest salinity tolerance, evidenced by better chlorophyll retention, membrane stability, and enhanced activity of antioxidant enzymes such as catalase and superoxide dismutase. Similarly, T3 (acid lime PKM 1 scion grafted onto wood apple) plants demonstrated improved nematode resistance, marked by higher leaf phenol content and peroxidase activity, as well as a reduced nematode population. These findings suggest that grafting onto rangpur lime and wood apple rootstocks strengthens the physiological and biochemical mechanisms in acid lime, enabling better adaptation to environmental stresses. This study provides suitable rootstock options for enhancing acid lime productivity in areas impacted by nematode and salinity problems.

References

  1. Forner-Giner MA, Continella A, Grosser JW. Citrus rootstock breeding and selection. Citrus Genome. 2020;49-74. https://doi.org/10.1007/978-3-030-15308-3_5
  2. Pathania S, Singh H, Mavi MS, Choudhary OP, Sharma S. Effectiveness of the entropy weight method to evaluate abiotic stress tolerance in citrus rootstocks. Spanish J Agric Res. 2022;20(1):e0801. https://doi.org/10.5424/sjar/2022201-18616
  3. Niu M, Wei L, Peng Y, Huang Y, Bie Z. Mechanisms of increasing salt resistance of vegetables by grafting. Veg Res. 2022;2(1):1-9. https://doi.org/10.48130/VR-2022-0008
  4. Syvertsen J, Garcia-Sanchez F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot. 2014;103:128-37. https://doi.org/10.1016/j.envexpbot.2013.09.015
  5. Verdejo-Lucas S, Sorribas FJ, Galeano M, Pastor J, Pons J. Resistance of the citrus rootstock forner-alcaide 5 to Tylenchulus semipenetrans in replant situations. Crop Protect. 2023;167:106199. https://doi.org/10.1016/j.cropro.2023.106199
  6. Oliveira TM, Micheli F, Maserti EB, Navarro L, Talón M, Ollitrault P, et al. Physiological responses of diploid and doubled diploid ‘Rangpur’ lime under water deficit. Acta Hortic. 2015;1065:1393-97. https://doi.org/10.17660/ActaHortic.2015.1065.176
  7. Rao NR, Prasad M. Evaluation of strains of Poncirus trifoliata and trifoliate orange hybrids for resistance to Phytophthora root rot. Scientia Hortic. 1983;20(1):85-90. https://doi.org/10.1016/0304-4238(83)90114-0
  8. Balal RM, Ashraf MY, Khan MM, Jaskani MJ, Ashfaq M. Influence of salt stress on growth and biochemical parameters of citrus rootstocks. Pak J Bot. 2011;43(4):2135-41.
  9. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. https://doi.org/10.1104/pp.24.1.1
  10. Leopold AC, Musgrave ME, Williams KM. Solute leakage resulting from leaf desiccation. Plant Physiol. 1981;68(6):1222-25. https://doi.org/10.1104/pp.68.6.1222
  11. Bates LS, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-07. https://doi.org/10.1007/BF00018060
  12. Bray H, Thorpe W. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal. 1954;27-52. https://doi.org/10.1002/9780470110171.ch2
  13. Gopalachari N. Changes in the activities of certain oxidizing enzymes during germination and seedling development of Phaseolus mungo and Sorghum vulgare. Ind J Exp Biol. 1963;1(2):98-100.
  14. Thomas RL, Jen JJ, Morr CV. Changes in soluble and bound peroxidase—IAA oxidase during tomato fruit development. J Food Sci. 1982;47(1):158-61. https://doi.org/10.1111/j.1365-2621.1982.tb11048.x
  15. Mayer JE, Wood WW. Interfacial tension effects in finite, periodic, two-dimensional systems. J Chem Phys. 1965;42(12):4268-74. https://doi.org/10.1063/1.1695931
  16. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276-87. https://doi.org/10.1016/0003-2697(71)90370-8
  17. Nicholas JC, Harper JE, Hageman RH. Nitrate reductase activity in soybeans (Glycine max [L.] Merr.) I. Effects of light and temperature. Plant Physiol. 1976;58(6):731-35. https://doi.org/10.1104/pp.58.6.731
  18. Taiz L. Plant physiology and development. Sinauer Associates. Incorporated; 2015.
  19. Gupta N, Sen N. Studies on the initial establishment of mango seedling in saline environment. South Ind Hortic. 2003;51(1):106-109. https://www.cabidigitallibrary.org/doi/full/10.5555/20043110612
  20. Wang D, Gao Y, Sun S, Lu X, Li Q, Li L, et al. Effects of salt stress on the antioxidant activity and malondialdehyde, solution protein, proline and chlorophyll contents of three Malus species. Life. 2022;12(11):1929. https://doi.org/10.3390/life12111929
  21. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, et al. Transcriptome sequencing and whole genome expression profiling of Chrysanthemum under dehydration stress. BMC Genomics. 2013;14:1-15. https://doi.org/10.1186/1471-2164-14-662
  22. Hussain M, Iqbal Raja N, Mashwani ZUR, Iqbal M, Ejaz M, Aslam S. Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow (Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET Nanobiotechnol. 2019;13(3):250-56. https://doi.org/10.1049/iet-nbt.2018.5049
  23. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012(1):217037. https://doi.org/10.1155/2012/217037
  24. Rai M, Bhattarai N, Dhungel N, Mandal P. Isolation of antibiotic producing Actinomycetes from soil of Kathmandu valley and assessment of their antimicrobial activities. Int J Microbiol Allied Sci. 2016;2(4):22-26.
  25. Romero Trigueros C, Nortes Tortosa PA, Alarcón Cabañero JJ, Nicolás Nicolás E. Determination of 15N stable isotope natural abundances for assessing the use of saline reclaimed water in grapefruit. Remote Sens. 2019;11(7):757. https://doi.org/10.3390/rs11070757
  26. Deka A, Sahu N, Jain K. Utilization of fruit processing wastes in the diet of Labeo rohita fingerling. Asian-Australasian J Animal Sci. 2003;16(11):1661-65. https://doi.org/10.5713/ajas.2003.1661
  27. Qi M, Liu Y, Li T. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Element Res. 2013;156:323-28. https://doi.org/10.1007/s12011-013-9833-2
  28. Sawale P, Patil M, Tummod A, Pavhane S. Effect of nutrients on growth and physical attributes of acid lime (Citrus aurantifolia L.) cv. Sai Sharbati. Pharm Innov J. 2021;10(11):2063-66.
  29. Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. 2010;8:e0140. https://doi.org/10.1199/tab.0140
  30. Wilski A, Giebel J. Mechanisms of beta-glucosidase in Heterodera rostochiensis Woll. and its significance in potato resistance to this nematode. Comptes Rendus du 8e Symposium International de Nematologie. 1968;8:1-9.
  31. Lagrimini LM. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 1991;96(2):577-83. https://doi.org/10.1104/pp.96.2.577
  32. Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem. 2008;40(8):2016-20. https://doi.org/10.1016/j.soilbio.2008.03.011
  33. Azam T, Singh HS, Robab MI. Effect of different inoculum levels of Meloidogyne incognita on growth and yield of Lycopersicon esculentum and internal structure of infected root. Arch Phytopathol Plant Protect. 2011;44(18):1829-39. https://doi.org/10.1080/03235400802678113
  34. Di Vito M, Greco N, Carella A. The effect of population densities of Meloidogyne incognita on the yield of cantaloupe and tobacco. Nematologia Mediterranea Ematol Medi. 1983;11:169-74.
  35. Hussain M, Mukhtar T, Kayani M. Assessment of the damage caused by Meloidogyne incognita on okra (Abelmoschus esculentus). J Anim Plant Sci. 2011;21(857):e861.

Downloads

Download data is not yet available.