Forthcoming

Rootstock mediated enhancement of abiotic and biotic stress tolerance in acid lime (Citrus aurantiifolia)

Authors

DOI:

https://doi.org/10.14719/pst.6466

Keywords:

abiotic stress, acid lime, biotic stress, Citrus aurantiifolia, grafting, rootstocks, stress tolerance

Abstract

The study aimed to evaluate the performance of different rootstocks for acid lime (Citrus aurantiifolia) under salinity and nematode stress, focusing on their impact on plant growth and biochemical parameters. Grafted combinations involving acid lime (PKM 1) scions with rangpur lime and wood apple rootstocks were tested for salinity tolerance and resistance to Tylenchulus semipenetrans. The study, conducted from 2023 to 2024 at Tamil Nadu Agricultural University, HC & RI, Coimbatore, Tamil Nadu, utilized varying sodium chloride (NaCl) concentrations to simulate salinity stress and nematode inoculation for biotic stress evaluation. Results indicated that the R5 combination (acid lime PKM 1 scion grafted onto rangpur lime) exhibited the highest salinity tolerance, evidenced by better chlorophyll retention, membrane stability, and enhanced activity of antioxidant enzymes such as catalase and superoxide dismutase. Similarly, T3 (acid lime PKM 1 scion grafted onto wood apple) plants demonstrated improved nematode resistance, marked by higher leaf phenol content and peroxidase activity, as well as a reduced nematode population. These findings suggest that grafting onto rangpur lime and wood apple rootstocks strengthens the physiological and biochemical mechanisms in acid lime, enabling better adaptation to environmental stresses. This study provides suitable rootstock options for enhancing acid lime productivity in areas impacted by nematode and salinity problems.

Downloads

Download data is not yet available.

References

Forner-Giner MA, Continella A, Grosser JW. Citrus rootstock breeding and selection. Citrus Genome. 2020;49-74. https://doi.org/10.1007/978-3-030-15308-3_5

Pathania S, Singh H, Mavi MS, Choudhary OP, Sharma S. Effectiveness of the entropy weight method to evaluate abiotic stress tolerance in citrus rootstocks. Spanish J Agric Res. 2022;20(1):e0801. https://doi.org/10.5424/sjar/2022201-18616

Niu M, Wei L, Peng Y, Huang Y, Bie Z. Mechanisms of increasing salt resistance of vegetables by grafting. Veg Res. 2022;2(1):1-9. https://doi.org/10.48130/VR-2022-0008

Syvertsen J, Garcia-Sanchez F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot. 2014;103:128-37. https://doi.org/10.1016/j.envexpbot.2013.09.015

Verdejo-Lucas S, Sorribas FJ, Galeano M, Pastor J, Pons J. Resistance of the citrus rootstock forner-alcaide 5 to Tylenchulus semipenetrans in replant situations. Crop Protect. 2023;167:106199. https://doi.org/10.1016/j.cropro.2023.106199

Oliveira TM, Micheli F, Maserti EB, Navarro L, Talón M, Ollitrault P, et al. Physiological responses of diploid and doubled diploid ‘Rangpur’ lime under water deficit. Acta Hortic. 2015;1065:1393-97. https://doi.org/10.17660/ActaHortic.2015.1065.176

Rao NR, Prasad M. Evaluation of strains of Poncirus trifoliata and trifoliate orange hybrids for resistance to Phytophthora root rot. Scientia Hortic. 1983;20(1):85-90. https://doi.org/10.1016/0304-4238(83)90114-0

Balal RM, Ashraf MY, Khan MM, Jaskani MJ, Ashfaq M. Influence of salt stress on growth and biochemical parameters of citrus rootstocks. Pak J Bot. 2011;43(4):2135-41.

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. https://doi.org/10.1104/pp.24.1.1

Leopold AC, Musgrave ME, Williams KM. Solute leakage resulting from leaf desiccation. Plant Physiol. 1981;68(6):1222-25. https://doi.org/10.1104/pp.68.6.1222

Bates LS, Waldren R, Teare I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-07. https://doi.org/10.1007/BF00018060

Bray H, Thorpe W. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal. 1954;27-52. https://doi.org/10.1002/9780470110171.ch2

Gopalachari N. Changes in the activities of certain oxidizing enzymes during germination and seedling development of Phaseolus mungo and Sorghum vulgare. Ind J Exp Biol. 1963;1(2):98-100.

Thomas RL, Jen JJ, Morr CV. Changes in soluble and bound peroxidase—IAA oxidase during tomato fruit development. J Food Sci. 1982;47(1):158-61. https://doi.org/10.1111/j.1365-2621.1982.tb11048.x

Mayer JE, Wood WW. Interfacial tension effects in finite, periodic, two-dimensional systems. J Chem Phys. 1965;42(12):4268-74. https://doi.org/10.1063/1.1695931

Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276-87. https://doi.org/10.1016/0003-2697(71)90370-8

Nicholas JC, Harper JE, Hageman RH. Nitrate reductase activity in soybeans (Glycine max [L.] Merr.) I. Effects of light and temperature. Plant Physiol. 1976;58(6):731-35. https://doi.org/10.1104/pp.58.6.731

Taiz L. Plant physiology and development. Sinauer Associates. Incorporated; 2015.

Gupta N, Sen N. Studies on the initial establishment of mango seedling in saline environment. South Ind Hortic. 2003;51(1):106-109. https://www.cabidigitallibrary.org/doi/full/10.5555/20043110612

Wang D, Gao Y, Sun S, Lu X, Li Q, Li L, et al. Effects of salt stress on the antioxidant activity and malondialdehyde, solution protein, proline and chlorophyll contents of three Malus species. Life. 2022;12(11):1929. https://doi.org/10.3390/life12111929

Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, et al. Transcriptome sequencing and whole genome expression profiling of Chrysanthemum under dehydration stress. BMC Genomics. 2013;14:1-15. https://doi.org/10.1186/1471-2164-14-662

Hussain M, Iqbal Raja N, Mashwani ZUR, Iqbal M, Ejaz M, Aslam S. Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow (Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET Nanobiotechnol. 2019;13(3):250-56. https://doi.org/10.1049/iet-nbt.2018.5049

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012(1):217037. https://doi.org/10.1155/2012/217037

Rai M, Bhattarai N, Dhungel N, Mandal P. Isolation of antibiotic producing Actinomycetes from soil of Kathmandu valley and assessment of their antimicrobial activities. Int J Microbiol Allied Sci. 2016;2(4):22-26.

Romero Trigueros C, Nortes Tortosa PA, Alarcón Cabañero JJ, Nicolás Nicolás E. Determination of 15N stable isotope natural abundances for assessing the use of saline reclaimed water in grapefruit. Remote Sens. 2019;11(7):757. https://doi.org/10.3390/rs11070757

Deka A, Sahu N, Jain K. Utilization of fruit processing wastes in the diet of Labeo rohita fingerling. Asian-Australasian J Animal Sci. 2003;16(11):1661-65. https://doi.org/10.5713/ajas.2003.1661

Qi M, Liu Y, Li T. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Element Res. 2013;156:323-28. https://doi.org/10.1007/s12011-013-9833-2

Sawale P, Patil M, Tummod A, Pavhane S. Effect of nutrients on growth and physical attributes of acid lime (Citrus aurantifolia L.) cv. Sai Sharbati. Pharm Innov J. 2021;10(11):2063-66.

Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. 2010;8:e0140. https://doi.org/10.1199/tab.0140

Wilski A, Giebel J. Mechanisms of beta-glucosidase in Heterodera rostochiensis Woll. and its significance in potato resistance to this nematode. Comptes Rendus du 8e Symposium International de Nematologie. 1968;8:1-9.

Lagrimini LM. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 1991;96(2):577-83. https://doi.org/10.1104/pp.96.2.577

Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem. 2008;40(8):2016-20. https://doi.org/10.1016/j.soilbio.2008.03.011

Azam T, Singh HS, Robab MI. Effect of different inoculum levels of Meloidogyne incognita on growth and yield of Lycopersicon esculentum and internal structure of infected root. Arch Phytopathol Plant Protect. 2011;44(18):1829-39. https://doi.org/10.1080/03235400802678113

Di Vito M, Greco N, Carella A. The effect of population densities of Meloidogyne incognita on the yield of cantaloupe and tobacco. Nematologia Mediterranea Ematol Medi. 1983;11:169-74.

Hussain M, Mukhtar T, Kayani M. Assessment of the damage caused by Meloidogyne incognita on okra (Abelmoschus esculentus). J Anim Plant Sci. 2011;21(857):e861.

Published

05-03-2025

How to Cite

1.
Jogdand MV, Shanmugasundaram KA, Malathi G, Jothi G, Muthuvel I. Rootstock mediated enhancement of abiotic and biotic stress tolerance in acid lime (Citrus aurantiifolia). Plant Sci. Today [Internet]. 2025 Mar. 5 [cited 2025 Mar. 29];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/6466

Issue

Section

Research Articles

Most read articles by the same author(s)