Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Transgenerational toxicity of imidacloprid on demography and behaviour of key larval parasitoid, Habrobracon hebetor (Say)

DOI
https://doi.org/10.14719/pst.6470
Submitted
2 December 2024
Published
13-06-2025 — Updated on 29-07-2025
Versions

Abstract

A successful Integrated Pest Management (IPM) program depends on using both bio agents and chemical pesticides, making it essential to consider pesticide effects on non-target organisms used in biological control. This study examines the effects of LC5, LC30, and LC50 concentrations of imidacloprid on the demographic and behavioural traits of Habrobracon hebetor (Say) across successive generations (F1 to F5). In the bioassay experiments, imidacloprid exhibited profound toxicity, with an LC50 of 40.75 mg L-1, while LC5 was 0.27 mg L-1 and LC30 was 8.27 mg L-1. Notably, egg and larval development periods were significantly prolonged in F5 individuals exposed to LC5 and LC30 compared to those in F1. Key population parameters, including the net reproductive rate (R₀), gross reproductive rate (GRR), and mean generation time (T), were markedly lower in the F5 generation, particularly at LC30. Exposure to LC50 in the F5 generation resulted in extended egg, larval, and pupal development durations, alongside reduced male longevity, fecundity, and oviposition periods. All population parameters, except the intrinsic rate of increase (r) and finite rate of increase (λ), were significantly impacted. Additionally, walking behaviour differed significantly among individuals treated with LC5, LC30, and LC50 concentrations; while LC5 exposure notably increased walking speed, it still exerted a detrimental effect on demographic parameters overall. To minimize these adverse outcomes, optimizing the timing of pesticide application is essential to avoid antagonistic interactions with natural enemies in IPM programs.

References

  1. 1. Stanley J, Preetha G. Pesticide toxicity to microorganisms: Exposure, toxicity and risk assessment methodologies. Springer Netherlands; 2016. 351-410 https://doi.org/10.1007/978-94-017-7752-0_6
  2. 2. Stark JD, Banks JE. Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol. 2003;48(1):505-19. https://doi.org/10.1146/annurev.ento.48.091801.112621
  3. 3. Cutler GC. Insects, insecticides and hormesis: Evidence and considerations for study. Dose-response. 2012;11(2):154-77. https://doi.org/10.2203/dose-response.12-008.Cutler
  4. 4. Yao FL, Zheng Y, Zhao JW, Desneux N, He YX, Weng QY. Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere. 2015;128:49-55. https://doi.org/10.1016/j.chemosphere.2015.01.010
  5. 5. Borzoui E, Naseri B, Mohammadzadeh-Bidarani M. Adaptation of Habrobracon hebetor (Hymenoptera: Braconidae) to rearing on Ephestia kuehniella (Lepidoptera: Pyralidae) and Helicoverpa armigera (Lepidoptera: Noctuidae). J Insect Sci. 2016;16(1):12. https://doi.org/10.1093/jisesa/iew001
  6. 6. Tirello P, Pozzebon A, Duso C. The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: laboratory studies. Chemosphere. 2013;93(6):1139-44. https://doi.org/10.1016/j.chemosphere.2013.06.046
  7. 7. Schneider MI, Sanchez N, Pineda S, Chi H, Ronco A. Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): Ecological approach. Chemosphere. 2009;76(10):1451-55. https://doi.org/10.1016/j.chemosphere.2009.05.029
  8. 8. Hasan F, Ansari MS. Lethal and sublethal effects of insecticides on the biological attributes of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae): A biocontrol agent of Parthenium hysterophorus L. Neotrop. Entomol. 2017;46:473-86. https://doi.org/10.1007/s13744-017-0485-3
  9. 9. Li YF, An JJ, Dang ZH, Pan WL, Gao ZL. Systemic control efficacy of neonicotinoids seeds dressing on English grain aphid (Hemiptera: Aphididae). J Asia Pac Entomol. 2018;21(1):430-35. https://doi.org/10.1016/j.aspen.2018.01.003
  10. 10. Dicks L. Bees, lies and evidence-based policy. Nature. 2013;494(7437):283. https://doi.org/10.1038/494283a
  11. 11. Mahdavi V. Residual toxicity of some pesticides on the larval ectoparasitoid, Habrobracon hebetor Say (Hymenoptera: Braconidae). J Pl Prot Res. 2013;53(1):27-31. https://doi.org/10.2478/jppr-2013-0003
  12. 12. Abedi Z, Saber M, Gharekhani G, Mehrvar A, Kamita SG. Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). J Econ Entomol. 2014;107(2):638-45. https://doi.org/10.1603/EC13227
  13. 13. Dastjerdi HR, Hejazi MJ, Ganbalani GN, Saber M. Sublethal effects of some conventional and biorational insecticides on ectoparasitoid, Habrobracon hebetor Say (Hymenoptera: Braconidae). J Entomol. 2009;6(2):82-89. https://doi.org/10.3923/je.2009.82.89
  14. 14. Asadi A, Karimi J, Abbasipour H. The effect of sublethal concentrations of malathion on some biological parameters of the ectoparasitoid wasp, Habrobracon hebetor (Say, 1836). Acta Agric Slov. 2018;111(3):639-46. https://doi.org/10.14720/aas.2018.111.3.12
  15. 15. Gowda GB, Pandi GGP, Ullah F, Patil NB, Sahu M, Adak T, et al. Performance of Trichogramma japonicum under field conditions as a function of the factitious host species used for mass rearing. PLoS One. 2021;16(8):e0256246. https://doi.org/10.1371/journal.pone.0256246
  16. 16. Gowda GB, Sahu M, Ullah F, Patil NB, Adak T, Pokhare S, et al. Insecticide-induced hormesis in a factitious host, Corcyra cephalonica, stimulates the development of its gregarious ecto-parasitoid, Habrobracon hebetor. Biological Control. 2021;160:104680. https://doi.org/10.1016/j.biocontrol.2021.104680
  17. 17. Hagstrum DW, Smittle BJ. Host-finding ability of Bracon hebetor and its influence upon adult parasite survival and fecundity. Environ Entomol. 1977;6(3):437-39. https://doi.org/10.1093/ee/6.3.437
  18. 18. Ghimire MN, Phillips TW. Oviposition and reproductive performance of Habrobracon hebetor (Hymenoptera: Braconidae) on six different pyralid host species. Ann Entomol Soc Am. 2014;107(4):809-17. https://doi.org/10.1603/AN14046
  19. 19. Ray A, Gadratagi BG, Budhlakoti N, Rana DK, Adak T, Govindharaj GP, et al. Functional response of an egg parasitoid, Trichogramma chilonis Ishii to sublethal imidacloprid exposure. Pest Manag Sci. 2023;79(10):3656-65. https://doi.org/10.1002/ps.7540
  20. 20. Preetha G, Stanley J, Suresh S, Kuttalam S, Samiyappan R. Toxicity of selected insecticides to Trichogramma chilonis: Assessing their safety in the rice ecosystem. Phytoparasitica. 2009;37:209-15. https://doi.org/10.1007/s12600-009-0031-x
  21. 21. Amir-Maafi M, Chi H. Demography of Habrobracon hebetor (Hymenoptera: Braconidae) on two pyralid hosts (Lepidoptera: Pyralidae). Ann Entomol Soc Am. 2006; 99(1):84-90. https://doi.org/10.1603/0013-8746(2006)099[0084:DOHHHB]2.0.CO;2
  22. 22. Pezzini C, Jahnke SM, Kohler A. Morphological characterization of immature stages of Habrobracon hebetor (Hymenoptera, Braconidae) ectoparasitoid of Ephestia kuehniella (Lepidoptera, Pyralidae). J Hymenopt Res. 2017;60:157-71. https://doi.org/10.3897/jhr.60.20104
  23. 23. Nath A, Gadratagi BG, Maurya RP, Ullah F, Patil NB, Adak T, et al. Sublethal phosphine fumigation induces transgenerational hormesis in a factitious host, Corcyra cephalonica. Pest Manag Sci. 2023;79(10):3548-58. https://doi.org/10.1002/ps.7542
  24. 24. Cedden D, Guney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double‐stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. Pest Manag Sci. 2024;80(5):2282-93. https://doi.org/10.1002/ps.7494
  25. 25. Ullah F, Gul H, Desneux N, Tariq K, Ali A, Gao X, et al. Clothianidin-induced sublethal effects and expression changes of vitellogenin and ecdysone receptors genes in the melon aphid, Aphis gossypii. Entomol Gen. 2019;39(2):137-49. https://doi.org/10.1127/entomologia/2019/0865
  26. 26. Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol. 1988;17(1):26-34. https://doi.org/10.1093/ee/17.1.26
  27. 27. Chi H, You M, Atlıhan R, Smith CL, Kavousi A, Ozgokçe MS, et al. Age-stage, two-sex life table: an introduction to theory, data analysis and application. Entomol Gen. 2020;40(2):103-24. https://doi.org/10.1127/entomologia/2020/0936
  28. 28. Stark JD, Banks JE, Acheampong S. Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population structure. Biological Control. 2004;29(3):392-98. https://doi.org/10.1016/j.biocontrol.2003.07.003
  29. 29. Sarmadi S, Nouri-Gonbalani G, Rafiee-Dastjerdi H, Hassanpour M, Farshbaf-Pourabad R. The effects of imidacloprid, indoxacarb and deltamethrin on some biological and demographic parameters of Habrobracon hebetor Say (Hymenoptera: Braconidae) in adult stage treatment. Munis Entomol Zool. 2010;5:646-51.
  30. 30. Shankarganesh K, Paul B, Naveen NC. Eco-toxicological effect of insecticides on the larval parasitoid, Bracon brevicornis Wesmael (Hymenoptera: Braconidae). Afr Entomol. 2017;25(2):367-74. https://doi.org/10.4001/003.025.0367
  31. 31. DPPQS. Major uses of pesticides; 2024 https://ppqs.gov.in/divisions/cib-rc/major-uses-of-pesticides
  32. 32. Sarmadi S. Laboratory investigation on lethal and sub-lethal effects of imidacloprid, indoxacarb and deltamethrin on parasitoid wasp Habrobracon hebetor Say (Hymenoptera: Braconidae). Ardabil: University of Mohaghegh Ardabili; 2008
  33. 33. Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007;52(1):81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440
  34. 34. Ullah F, Gul H, Desneux N, Gao X, Song D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol Gen. 2019;39(3-4):325-37. https://doi.org/10.1127/entomologia/2019/0892
  35. 35. Gowda GB, Ray A, Adak T, Sahu M, Sahu N, Pandi GP, et al. Non-target effect of pesticides in rice environment. ORYZA. 2021;58(1 SPL):194-207. https://doi.org/10.35709/ory.2021.58.spl.8
  36. 36. Liu TX, Chen TY. Effects of the insect growth regulator fenoxycarb on immature Chrysoperla rufilabris (Neuroptera: Chrysopidae). Fla Entomol. 2001;628-33. https://doi.org/10.2307/3496394
  37. 37. Jones WA, Ciomperlik MA, Wolfenbarger DA. Lethal and sublethal effects of insecticides on two parasitoids attacking Bemisia argentifolii (Homoptera: Aleyrodidae). Biological Control. 1998;11(1):70-76. https://doi.org/10.1006/bcon.1997.0581
  38. 38. Consoli FL, Parra JR, Hassan SA. Side‐effects of insecticides used in tomato fields on the egg parasitoid Trichogramma pretiosum Riley (Hym., Trichogrammatidae), a natural enemy of Tuta absoluta (Meyrick) (Lep., Gelechiidae). J Appl Entomol. 1998;122(1‐5):43-47. https://doi.org/10.1111/j.1439-0418.1998.tb01459.x
  39. 39. Bayram A, Salerno G, Onofri A, Conti E. Sub-lethal effects of two pyrethroids on biological parameters and behavioral responses to host cues in the egg parasitoid Telenomus busseolae. Biological Control. 2010;53(2):153-60. https://doi.org/10.1016/j.biocontrol.2009.09.012
  40. 40. Desneux N, Denoyelle R, Kaiser L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere. 2006;65(10):1697-706. https://doi.org/10.1016/j.chemosphere.2006.04.082
  41. 41. Kalajahi MJ, Ganbalani GN, Kazemi MH, Shojai M, Imani S. Investigation of sex ratio and adult longevity of Habrobracon hebetor Say in relation to some conventional and biorational insecticides. Arch Phytopathol Pflanzenschutz. 2014;47(7):852-56. https://doi.org/10.1080/03235408.2013.823714
  42. 42. Rafiee-Dastjerdi H, Hassanpour M, Nouri-Ganbalani G, Golizadeh A, Sarmadi S. Sublethal effects of indoxacarb, imidacloprid and deltamethrin on life table parameters of Habrobracon hebetor (Hymenoptera: Braconidae) in pupal stage treatment. J Crop Prot. 2012;1(3):221-28. http://jcp.modares.ac.ir/article-3-4389-en.html
  43. 43. Ray A, Gadratagi BG, Rana DK, Ullah F, Adak T, Govindharaj GP, et al. Multigenerational insecticide hormesis enhances fitness traits in a key egg parasitoid, Trichogramma chilonis Ishii. Agronomy. 2022;12(6):1392. https://doi.org/10.3390/agronomy12061392
  44. 44. Faal-Mohammad-Ali H, Allahyari H, Saber M. Sublethal effect of chlorpyriphos and fenpropathrin on functional response of Habrobracon hebetor (Hym.: Braconidae). Arch Phytopathol Pflanzenschutz. 2015;48(4):288-96. https://doi.org/10.1080/03235408.2014.886411
  45. 45. Muslim M, Ansari MS, Hasan F. Non-target toxicity of synthetic insecticides on the biological performance and population growth of Bracon hebetor Say. Ecotoxicology. 2018;27:1019-31. https://doi.org/10.1007/s10646-018-1947-z
  46. 46. Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, et al. Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS One. 2015;10(9):e0138411. https://doi.org/10.1371/journal.pone.0138411
  47. 47. Carey JR. Applied demography for biologists: With special emphasis on insects. Oxford University Press; 1993https://doi.org/10.1093/oso/9780195066876.001.0001
  48. 48. Salerno G, Colazza S, Conti E. Sub‐lethal effects of deltamethrin on walking behaviour and response to host kairomone of the egg parasitoid Trissolcus basalis. Pest Manag Sci. 2002;58(7):663-68. https://doi.org/10.1002/ps.492
  49. 49. Andreazza F, Haddi K, Nornberg SD, Guedes RN, Nava DE, Oliveira EE. Sex-dependent locomotion and physiological responses shape the insecticidal susceptibility of parasitoid wasps. Environ Pollut. 2020;264:114605. https://doi.org/10.1016/j.envpol.2020.114605
  50. 50. Ramos RS, de Araujo VC, Pereira RR, Martins JC, Queiroz OS, Silva RS, et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere. 2018;191:770-78. https://doi.org/10.1016/j.chemosphere.2017.10.113
  51. 51. Abbink J. The biochemistry of imidacloprid. Pflanzenschutz-Nachur Bayer. 1991;44:183–94.
  52. 52. Tomizawa M, Yamamoto I. Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci. 1992;17(4):231-36. https://doi.org/10.1584/jpestics.17.4_231
  53. 53. Tabozada EO, Sayed SM, El-Arnaouty SA. Side effects of sublethal concentration of two neonicotinoids; thiamethoxam and thiacloprid on the larval parasitoid, Bracon brevicornis (Hymenoptera: Braconidae). Am J Exp Agric. 2014;5(1):29-35. https://doi.org/10.9734/AJEA/2015/12469

Downloads

Download data is not yet available.