Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Effect of organic root-inducing substances on the propagation of katmon (Dillenia philippinensis Rolfe) in a mist clonal nursery chamber

DOI
https://doi.org/10.14719/pst.6484
Submitted
2 December 2024
Published
28-07-2025 — Updated on 06-08-2025
Versions

Abstract

The katmon (Dillenia philippinensis Rolfe) is a native species of the Philippines and is classified as “Vulnerable” on the IUCN Red List of Threatened Species due to the frequent cutting of trees for timber, leading to a significant decline in its population. The limited number of studies on the propagation of katmon underscores the need for further research to support its rapid reproduction, conservation and restoration. Clonal propagation allows the mass production of genetically homogeneous and high-quality plants. Natural exogenous rooting hormones (e.g., coconut water, honey, and Aloe vera) promote root formation in cuttings by promoting cell division and differentiation, which leads to the development of new root primordia. The study evaluated various sources of katmon cuttings (Factor A), each treated with different organic root-inducing substances (Factor B), over a period of 90 days in a mist clonal chamber using 4 × 4 factorial experimental design. Results indicated that plagiotropic cuttings derived from cloned katmon plants and treated with Aloe vera gel outperformed most other treatments. These cuttings exhibited the highest survivability rate (90.0 %) after 30 days, which remained the highest at 60 (46.67 %) and 90 (30.0 %) days after planting. Furthermore, Aloe vera significantly influenced the number of leaf sprouts observed at 30 days (1.53). At 60 days, plagiotropic (1.67) and orthotropic (1.48) cuttings from cloned mother plants showed better performance than those derived from seed-germinated ones. Plagiotropic cloned cuttings remained impactful in terms of both the number (37.2) and length (33.2 cm) of roots at 90 days. The data generated from this study offer valuable insights for crafting effective propagation protocols for katmon. Such protocols can aid foresters, farmers and other stakeholders by increasing the population growth and supporting the conservation management of katmon.

References

  1. 1. Galang AP, Mesina SR, Marciano MR, Tungol AM, Sarmiento IP. Philippine native trees 101: Up close and personal. Manila: Green convergence for safe food, healthy environment and sustainable economy and hortica filipina foundation Inc.; 2012. 307 p.
  2. 2. Amoroso VB, Acma FM, Coritico FP, Gorme FS, Lagunday NE, Salology MCS, Colong RD. Floral diversity assessment of the buffer zones and vicinity of the Mt. Hamiguitan Range Wildlife Sanctuary (MHRWS), Davao Oriental: Basis for inclusion to protected area zone. Philipp J Syst Biol. 2018;12(2):36‒51. https://doi.org/10.26757/pjsb.2018b12004
  3. 3. Amoroso VB, Obsioma LD, Arlalejo JB, Aspiras RA, Capili DP, Polizon JJA, Sumile EB. Inventory and conservation of endangered, endemic and economically important flora of Hamiguitan Range, southern Philippines. Blumea. 2009;54:71‒76. https://doi.org/10.3767/000651909X474113
  4. 4. Hoogland RD. A revision of the genus Dillenia. Blumea. 1952;7:1‒145. https://repository.naturalis.nl/pub/525203/BLUM1952007001001.pdf
  5. 5. Malabrigo PL, David M, David-Pilar M. BINHI: Tree for the future. Energy Development Corporation, Philippines; 2016
  6. 6. IUCN. The IUCN red list of threatened species. Version 2020-1 [Internet]. Gland (Switzerland): International Union for Conservation of Nature; 2020 [cited 2025 Mar 30] Available from: https://www.iucnredlist.org
  7. 7. Buot Jr IE, Origenes MG, Obena RD, Villanueva EL, delos Angeles MD. Some threatened woody plant species recorded from forests over limestone of the Philippines. J Threat Taxa. 2022 Nov 26;14(11):22058‒79. https://doi.org/10.11609/jott.8119.14.11.22058-22079
  8. 8. Aguda RB. Conservation, utilization and management of forest genetic resources in the Philippines. 2002;75‒91.
  9. 9. Meloni M, Reid A, Caujape-Castells J, Marrero A, Fernández-Palacios JM, Mesa-Coelo RA, Conti E. Effects of clonality on the genetic variability of rare, insular species: the case of Ruta microcarpa from the Canary Islands. Ecol Evol. 2013 Jun;3(6):1569‒79. https://doi.org/10.1002/ece3.571
  10. 10. Cui Y, Deng Y, Zheng K, Hu X, Zhu M, Deng X, Xi R. An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Sci Rep. 2019 Jul 3;9(1):9634. https://doi.org/10.1038/s41598-019-46050-w
  11. 11. Samantaray S, Maiti S. Factors influencing rapid clonal propagation of Chlorophytum arundinaceum (Liliales: Liliaceae), an endangered medicinal plant. Rev Biol Trop. 2011 Mar;59(1):435‒45. https://doi.org/10.15517/rbt.v59i1.3210
  12. 12. Wang M, Li W, Qiang Q, Ma J, Chen J, Zhang X, et al. Clonal propagation and assessment of biomass production and saponin content of elite accessions of wild Paris polyphylla var. yunnanensis. Plants. 2023 Aug 18;12(16):2983. https://doi.org/10.3390/plants12162983
  13. 13. Brandao LG, Campinhos E (Jr.), Ikemori. Brazil's new forest soars to success. Forestry (PPR-December). 1984;38‒40.
  14. 14. Akachuku AE. The possibility of tree selection and breeding for genetic improvement of wood properties of Gmelina arborea. For Sci. 1984 Jun 1;30(2):275‒83. https://doi.org/10.1093/forestscience/30.2.275
  15. 15. Tolentino AA. Mist clonal nursery: The economical and simple cuttings propagation technique in Poblacion, Barotac Nuevo, Iloilo. Devcomconvergence; 2013 https://devcomconvergence.wordpress.com/2013/08/31/mist-clonal-nursery-the-economical-and-simple-cuttings-propagation-technique-in-poblacion-barotac-nuevo-iloilo/#:~:text=Clonal%20Nursery%20is%20a%20propagation
  16. 16. Hu H, Chai N, Zhu H, Li R, Huang R, Wang X, et al. Factors affecting vegetative propagation of wintersweet (Chimonanthus praecox) by softwood cuttings. HortSci. 2020 Nov 1;55(11):1853‒60. https://doi.org/10.21273/HORTSCI15289-20
  17. 17. Khandaker MM, Saidi A, Badaluddin NA, Yusoff N, Majrashi A, Alenazi MM, et al. Effects of indole-3-butyric acid (IBA) and rooting media on rooting and survival of air layered wax apple (Syzygium samarangense) CV Jambu Madu. Braz J Biol. 2022 Mar 25;82:e256277. https://doi.org/10.1590/1519-6984.256277
  18. 18. Tien LH, Chac LD, Oanh LT, Ly PT, Sau HT, Hung N, et al. Effect of auxins (IAA, IBA and NAA) on clonal propagation of Solanum procumbens stem cuttings. Plant Cell Biotechnol Mol Biol. 2020;21(55-56):113‒20.
  19. 19. Rajan RP, Singh G. A review on the use of organic rooting substances for propagation of horticulture crops. Plant Arch. 2021;21(1):685‒92. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.103
  20. 20. El-Deeb MD, Sourour MM, Marwa MM. Vegetative propagation of date palm (Phoenix dactylifera L.) by rooting small offshoots. Environ Agric Sci, Suez Canal Univ, Third Int Conf Date Palm. 2008;13(2):2025/4.
  21. 21. Uyoh EA, Ita EE, Essien M, Ewona EA, Binang M. Effect of synthetic hormone substitutes on rooting of vine cuttings in water yam. Am J Plant Sci. 2016 Jul 8;7:1372‒79.https://doi.org/10.4236/ajps.2016.79130
  22. 22. Cayon-Fernandez I. Student project a comparison of natural and synthetic rooting hormones for vegetative propagation using Saxagothaea conspicua Lindl. Sibbaldia Int J Bot Gard Hortic. 2020 Nov 4;17‒40. https://doi.org/10.24823/Sibbaldia.2020.278
  23. 23. Uddin AJ, Rakibuzzaman M, Raisa I, Maliha M, Husna MA. Impact of natural substances and synthetic hormone on grapevine cutting. J Biosci Agric Res. 2020;25:2069‒74. https://doi.org/10.18801/jbar.250120.253
  24. 24. El-Sherif F. Aloe vera leaf extract as a potential growth enhancer for Populus trees grown under in vitro conditions. Am J Plant Biol. 2017;2:101–05. https://doi.org/10.11648/j.ajpb.20170204.11
  25. 25. Magdalita PM, Abrigo MI, Coronel RE. Phenotypic evaluation of some promising rare fruit crops in the Philippines. Philipp Sci Lett. 2014;7:376.
  26. 26. Pijut PM, Woeste KE, Michler CH. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic Rev. 2011;38:213–51. https://doi.org/10.1002/9780470872376.ch6
  27. 27. Thomas P, Schiefelbein JW. Roles of leaf in regulation of root and shoot growth from single node softwood cuttings of grape. Ann Appl Biol. 2004 Feb;144:27‒37. https://doi.org/10.1111/j.1744-7348.2004.tb00313.x
  28. 28. Ky-Dembele C, Tigabu M, Bayala J, Savadogo P, Boussim IJ, Oden PC. Clonal propagation of Khaya senegalensis: The effects of stem length, leaf area, auxins, smoke solution and stock plant age. Int J For Res. 2011;2011:281269. https://doi.org/10.1155/2011/281269
  29. 29. Canher B, Heyman J, Savina M, Devendran A, Eekhout T, Vercauteren I, et al. Rocks in the auxin stream: Wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proc Natl Acad Sci USA. 2020 Jul 14;117:16667‒77.
  30. https://doi.org/10.1073/pnas.2006620117
  31. 30. Roussos PA. Adventitious root formation in plants: The implication of hydrogen peroxide and nitric oxide. Antioxidants. 2023 Apr 2; 12:862. https://doi.org/10.3390/antiox12040862
  32. 31. Mohd Geoffery R, Sani H. Promotion of adventitious root formation of miracle fruit through stem cuttings and air layering technique. Trans Sci Technol. 2017 Mar 20;4:1‒7.
  33. 32. Schenk HJ. Formation and repair of xylem embolisms: Current state of knowledge and implications for irrigation of horticultural crops. In: VII Int Symp Irrig Hortic Crops 1038; 2012 Jul 16. p. 311‒25 https://doi.org/10.17660/ActaHortic.2014.1038.37
  34. 33. Gokbayrak Z, Dardeniz A, Arikan A, Kaplan U. Submersion of grape rootstock 41B cuttings in water increase root formation. Indian J Hortic. 2011;68:255‒58.
  35. 34. Lapitan OB, Mabesa RC. Chemical and sensory characteristics of Laguna and Golden coconuts. Philipp Agric. 1983;66:144–50.
  36. 35. Devi MR, Asha R. Clonal propagation in horticultural crops [Internet]. The Pharma Innov J. 2021;10:496‒99. https://www.thepharmajournal.com/archives/2021/vol10issue8/PartG/10-5-85-445.pdf
  37. 36. Owen WG. Moisture management during vegetative cutting propagation [Internet]. Michigan State Univ Ext; 2018 Feb 2 [cited 2025 Mar 22] Available from: https://www.canr.msu.edu/news/moisture_management_during_vegetative_cutting_propagation
  38. 37. Khabou W. The effect of orthotropic and plagiotropic shoots on semi-hardwood cuttings rhizogenesis of some Tunisian olive cultivars. IV Int Symp Olive Growing 586; 2000 Sep 25. p. 887–90 https://doi.org/10.17660/ActaHortic.2002.586.193
  39. 38. Kohler AE, Lopez RG. Propagation of herbaceous unrooted cuttings of cold-tolerant species under reduced air temperature and root-zone heating. Sci Hortic. 2021;290:110485. https://doi.org/10.1016/j.scienta.2021.110485
  40. 39. Pinto KG, Paredio RF, Atroch AL, Filho FJN, Leite NRC, Konrad BNL, Albertino SMF. Rooting conditions for production of guarana clonal seedlings. Horticulturae. 2024;10:1169. https://doi.org/10.3390/horticulturae10111169
  41. 40. Ersoy N, Kalyoncu IH, Aydin M, Yilmaz M. Effects of some humidity and IBA hormone dose applications on rooting of M9 apple clonal rootstock softwood top cuttings. Afr J Biotechnol. 2010;9:2510‒14.
  42. 41. Wilson PJ. Environmental preferences of Eucalyptus globulus stem cuttings in one nursery. N Z J For Sci. 1998;28:304‒15.
  43. 42. Poudel S, Ishwori PG, Surendra LS, Dhakal M, Ghimire D, Pandey S, Anuja R, Jiban S. Effects of natural and synthetic rooting substances on rooting and shooting performance in dragon fruit (Hylocereus sp.). Russ J Agric Socio-Econ Sci. 2022;123(3):83‒88. https://doi.org/10.18551/rjoas.2022-03.09
  44. 43. Aryan S, Gulab G, Safi Z, Durani A, Raghib MG, Kakar K, et al. Enhancement of propagation using organic materials and growth hormone: A study on the effectiveness of growth and rooting of pomegranate cuttings. Horticulturae. 2023 Sep 4;9(9):999. https://doi.org/10.3390/horticulturae9090999
  45. 44. El-Banna H, Haroun SA, Albishi TS, Rashed AA, Albadrani M, Abdelaal K, et al. The natural alternatives: The impact of plant extracts on Snowbush (Breynia disticha Forst.) cuttings’ morpho-physiological and biochemical characteristics. Horticulturae. 2023 Oct 11;9(10):1122. https://doi.org/10.3390/horticulturae9101122
  46. 45. Bowden AT, Knight PR, Ryals JB, Coker CE, Langlois SA, Broderick SR, Sakhanokho HF. Evaluation of honey as a rooting adjuvant for cutting propagation of three common nursery crops. Agric. 2025;15(3):256. https://doi.org/10.3390/agriculture15030256
  47. 46. Ogwu MC, Izah SC. Honey as a natural antimicrobial. Antibiotics. 2025;14(3):255. https://doi.org/10.3390/antibiotics14030255
  48. 47. Molan PC. The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World. 1992;73(1):5–28. https://doi.org/10.1080/0005772X.1992.11099109
  49. 48. Kuçuk M, Kolayli S, Karaoglu S, Ulusoy E, Baltaci C, Candan F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007;100(2):526–34. https://doi.org/10.1016/j.foodchem.2005.10.010
  50. 49. Cavia MM, Fernández-Muino MA, Alonso-Torre SR, Huidobro JF, Sancho MT. Evolution of acidity of honeys from continental climates: influence of induced granulation. Food Chem. 2007;100(4):1728–33. https://doi.org/10.1016/j.foodchem.2005.10.019
  51. 50. Singh KK. Effect of IBA concentrations on the rooting of pomegranate (Punica granatum L.) cv. Ganesh hardwood cuttings under mist house condition. Plant Arch. 2014;14:1111–14. https://www.researchgate.net/publication/343821507
  52. 51. Mirihagalla MKPN, Fernando KMC. Effect of gel for inducing rooting of stem cuttings Aloe vera and air layering of plants. J Dry Zone Agric. 2020;2020:13–26. https://www.researchgate.net/publication/309373277
  53. 52. Alkuwayti MA, Aldayel MF, Yap YK, El Sherif F. Exogenous application of Aloe vera leaf extract improves silybin content in Silybum marianum L. by up regulating chalcone synthase gene. Agric. 2022;12(10):1649. https://doi.org/10.3390/agriculture12101649
  54. 53. Vilasboa J, Da Costa CT, Fett-Neto AG. Environmental modulation of mini-clonal gardens for cutting production and propagation of hard-and easy-to-root Eucalyptus spp. Plants. 2022;11(23):3281. https://doi.org/10.3390/plants11233281
  55. 54. Leakey RR, Newton AC, editors. Domestication of tropical trees for timber and non-timber products. MAB Digest No.17, UNESCO, Paris; 1994. 94 pp.
  56. 55. Kolln AM, Espindula MC, Araujo LFB, Campanharo M, Rocha RB, Giuriatto JJT. Clonal cutting production by Coffea canephora mother plants under increasing nitrogen doses. Rev Ceres. 2024;71:e71053. https://doi.org/10.1590/0034-737X2024710053
  57. 56. Hu W, Fagundez S, Katin-Grazzini L, Li Y, Li W, Chen Y, et al. Endogenous auxin and its manipulation influence in vitro shoot organogenesis of citrus epicotyl explants. Hortic Res. 2017;4. https://doi.org/10.1038/hortres.2017.71
  58. 57. Shekhawat MS, Manokari M. Impact of auxins on vegetative propagation through stem cuttings of Couroupita guianensis Aubl.: a conservation approach. Scientifica. 2016;2016(1):6587571. https://doi.org/10.1155/2016/6587571
  59. 58. Zhou TI, Zhou JI, Shelbourne CJ. Clonal selection, propagation and maintenance of juvenility of Chinese fir and afforestation with monoclonal blocks. N Z J For Sci. 1998;28:275‒92.
  60. 59. Junior EEE, Gusua CR, Tchapda TD, Andre ONP. Vegetative propagation of selected clones of cocoa (Theobroma cacao L.) by stem cuttings. J Hortic For. 2017;9(9):80‒90. https://doi.org/10.5897/JHF2017.0502
  61. 60. Randall WK, Miller AE. Mist propagation recommended for expanding Cottonwood clones rapidly. Tree Planters’ Notes. 1971;22(4):9‒13.
  62. 61. Klimes L. Clonal plant architecture: A comparative analysis of form and function. In: de Kroon H, van Groenendael JM, editors. The ecology and evolution of clonal plants; 1997. p. 1-29https://www.researchgate.net/publication/309373277_Clonal_plant_architecture_a_comparative_analysis_of_form_and_function
  63. 62. Malele J, Kleynhans R, Prinsloo G, Matsiliza-Mlathi B. Optimizing the cutting production of Greyia radlkoferi. S Afr J Bot. 2021;142:293‒98. https://doi.org/10.1016/j.sajb.2021.06.037
  64. 63. Liese R, Alings K, Meier IC. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front Plant Sci. 2017;8:315. https://doi.org/10.3389/fpls.2017.00315
  65. 64. Palacio S, Maestro M, Montserrat-Marti G. Relationship between shoot-rooting and root-sprouting abilities and the carbohydrate and nitrogen reserves of Mediterranean dwarf shrubs. Ann Bot. 2007;100(4):865‒74. https://doi.org/10.1093/aob/mcm185
  66. 65. Monder MJ, Pacholczak A. Preparations of plant origin enhance carbohydrate content in plant tissues of rooted cuttings of rambler roses: Rosa beggeriana 'Polstjärnan' and Rosa helenae 'Semiplena'. Acta Agric Scand B Soil Plant Sci. 2018;68(3):189‒98. https://doi.org/10.1080/09064710.2017.1378365
  67. 66. Denaxa NK, Vemmos SN, Roussos PA. The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Sci Hortic. 2012;143:19‒28. https://doi.org/10.1016/j.scienta.2012.05.026
  68. 67. Tombesi S, Palliotti A, Poni S, Farinelli D. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Front Plant Sci. 2015;6:973. https://doi.org/10.3389/fpls.2015.00973
  69. 68. Brassard N, Brissette L, Lord D, Laliberte S. Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch. Plant Cell Tissue Organ Cult. 1996;44:37‒44. https://doi.org/10.1007/BF00045911
  70. 69. Liu J, Zhang Z, Li Y, Han J, Si H, Mi Y, et al. Effects of the vegetative propagation method on juvenility in Robinia pseudoacacia L. For Res. 2022;2:17. https://doi.org/10.48130/FR-2022-0017
  71. 70. Ficko SA, Naeth MA. Root development on cuttings of seven arctic shrub species for revegetation. Arct Antarct Alp Res. 2021;53(1):237‒51. https://doi.org/10.1080/15230430.2021.1976711
  72. 71. Muttulani MAJJ. Grape (Vitis vinifera L.) propagation using different types of cuttings and root-inducing substances. J Agric Res Dev Ext Technol. 2022;4(1):1‒9. https://doi.org/10.5281/zenodo.8299752
  73. 72. Singh S, Tomar A. Techniques of clonal propagation of woody perennials. In book: Clonal forestry - Principles and practices. Publisher: Narendra Publishing House, New Delhi; 2023. pp.23‒45
  74. 73. Zhang LM, Zheng LL, Yu FH. Parental effects of physiological integration on growth of a clonal herb. Front Plant Sci. 2025;15:1518400. https://doi.org/10.3389/fpls.2024.1518400
  75. 74. Fonseca ALC, Magalhaes TA, Melo LA, Oliveira LS, Brondani GE. Rescue and vegetative propagation of Eremanthus erythropappus (DC.) MacLeish in natural stand. Braz J Biol. 2020;81(3):566‒74. https://doi.org/10.1590/1519-6984.225119
  76. 75. Geiss G, Gutierrez L, Bellini C. Adventitious root formation: New insights and perspectives. Annu Plant Rev Root Dev. 2009;37:127‒56. https://doi.org/10.1002/9781444310023.ch5
  77. 76. Bindumadhava H, Tamak J, Mahavishnan K, Upadhyay AP, Varghese M, Sharma N. Clonal propagation in Eucalyptus camaldulensis using minicutting technique. Curr Sci. 2011;1578‒85. https://www.jstor.org/stable/24080698
  78. 77. Sabatino L, D’Anna F, Iapichino G. Improved propagation and growing techniques for oleander nursery production. Horticulturae. 2019;5(3):55. https://doi.org/10.3390/horticulturae5030055
  79. 78. Geary TF, Harding WG. The effects of leaf quantity and trimming on rooting success with Eucalyptus camaldulensis Dehn. cuttings. Commonw For Rev. 1984;63(3):225‒30. https://www.jstor.org/stable/42606416
  80. 79. Caplan D, Stemeroff J, Dixon M, Zheng Y. Vegetative propagation of cannabis by stem cuttings: Effects of leaf number, cutting position, rooting hormone and leaf tip removal. Can J Plant Sci. 2018;98:1126‒32.
  81. https://doi.org/10.1139/cjps-2018-0038
  82. 80. Pinon AA, Reyes TDJR. Vegetative propagation of Aquilaria cumingiana (Decne) Ridl.: effects of IBA concentration and leaf trimming. Mindanao J Sci Technol. 2021;19(1):96‒115. https://doi.org/10.61310/mjst.v19i1.774
  83. 81. Hamzah A. A note on the effects of leaf number on rooting of Hopea odorata stem cuttings. J Trop for Sci. 1991;3(4):384‒86. https://www.jstor.org/stable/43594417
  84. 82. Villafuerte DE, Angeles E, Bayog A, Duka R, Menoza NL, Sanchez MA, De Jesus R. Root organogenesis induction in Epipremnum aureum stem cuttings with plant biostimulants and synthetic rooting hormone. bioRxiv. 2022 Jul. https://doi.org/10.1101/2022.07
  85. 83. Roulund H. Comparative study of characteristics of seedlings and clonal cuttings. N Z J For Sci. 1974;4:378‒86.
  86. 84. Mushtaq T, Banyal R, Mugloo J, Mushtaq T, Aziz MA. Clonal forestry: An effective technique for increasing the productivity of plantations. SKUAST J Res. 2017;19(1):22‒28.
  87. 85. Vennila S, Fernandaz CC, Kala S. Standardization of clonal propagation of Pterocarpus indicus Willd.: An important and endangered tree species. J Biotechnol and Crop Sci. 2023;10(15):162‒68. https://doi.org/10.5958/2582-5089.2022.00019.6
  88. 86. Prasannan P, Palanivel V, Ramasubbu R. In vitro propagation of Elaeocarpus venustus Bedd. (Elaeocarpaceae): A critically endangered tree of Southern Western Ghats, India. S Afr J Bot. 2023;160:622‒32. https://doi.org/10.1016/j.sajb.2023.01.021
  89. 87. Tagimanova D, Raiser O, Danilova A, Turzhanova A, Khapilina O. Micropropagation of rare endemic species Allium microdictyon Prokh. threatened in Kazakhstani Altai. Horticulturae. 2024;10(9):943. https://doi.org/10.3390/horticulturae10090943
  90. 88. Jose PA, Sumod M, Varghese TK. Clonal propagation of Drypetes malabarica (Bedd.) Airy Shaw: An endemic and endangered tree of Southern Western Ghats. Indian J For. 2015;38(1):35‒38. https://doi.org/10.54207/bsmps1000-2015-M72ZQA
  91. 89. Saradha M, Paulsamy S. Effect of growth hormones on rooting attributes of stem cuttings of endangered plant species, Hildegardia populifolia (Roxb.) Schott and Endl. (Sterculiaceae). Int J Biol Pharm Allied Sci. 2012;1(8):1145‒52.
  92. 90. Leakey RRB. Agroforestry: Participatory domestication of trees. In: Van Alfen NK, editor. Encyclopedia of agriculture and food systems. Academic Press; 2014. p. 253‒69 https://doi.org/10.1016/B978-0-444-52512-3.00025-5
  93. 91. Liu J, Xuan L, Yu C, Hua J, Wang Z, Yin Y, Wang Z. Molecular mechanism of different rooting capacity between two clones of Taxodium hybrid ‘Zhongshanshan’. Int J Mol Sci. 2024;25(4):2427. https://doi.org/10.3390/ijms25042427
  94. 92. Chen H, Lei Y, Sun J, Ma M, Deng P, Quan JE, Bi H. Effects of different growth hormones on rooting and endogenous hormone content of two Morus alba L. cuttings. Horticulturae. 2023;9(5):552. https://doi.org/10.3390/horticulturae9050552
  95. 93. Bannoud F, Bellini C. Adventitious rooting in Populus species: Update and perspectives. Front Plant Sci. 2021;12:668837. https://doi.org/10.3389/fpls.2021.668837
  96. 94. Da Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front Plant Sci. 2013;4:133. https://doi.org/10.3389/fpls.2013.00133
  97. 95. Tajima R. Importance of individual root traits to understand crop root system in agronomic and environmental contexts. Breed Sci. 2021;71(1):13‒19. https://doi.org/10.1270/jsbbs.20095
  98. 96. Wang S, Sun G, Luo Y, Qian W, Fan K, Ding Z, Hu J. Role of IAA and primary metabolites in two rounds of adventitious root formation in softwood cuttings of Camellia sinensis (L.). Agron. 2022;12(10):2486. https://doi.org/10.3390/agronomy12102486
  99. 97. Adem M, Sharma L, Shekhawat GS, Safranek M, Jasik J. Auxin signaling transportation and regulation during adventitious root formation. Curr Plant Biol. 2024;100385. https://doi.org/10.1016/j.cpb.2024.100385
  100. 98. Fattorini L, Veloccia A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol. 2017;17:133. https://doi.org/10.1186/s12870-017-1064-7
  101. 99. Li B, Zhang X, Morita S, Sekiya N, Araki H, Gu H., et al. Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping. Agric Water Manag. 2022;271:107781. https://doi.org/10.1016/j.agwat.2022.107781
  102. 100. Zhao Y, Chen Y, Jiang C, Lu MZ, Zhang J. Exogenous hormone supplementation improves adventitious root formation in woody plants. Front Bioeng Biotechnol. 2022;10:1009531. https://doi.org/10.3389/fbioe.2022.1009531
  103. 101. Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol. 2010;2(6):a001537. https://doi.org/10.1101/cshperspect.a001537
  104. 102. Verma P, Chauhan PS, Chandel JS, Thakur M. Effect of the size of cuttings (length and diameter) on rooting in cuttings of apple clonal rootstock Merton 793. J Appl Nat Sci. 2015;7(2):602‒05. https://doi.org/10.31018/jans.v7i2.652
  105. 103. Hassan A, Balachandran P, Khamis KR. Early root development of Eucalyptus pellita F. Muell. seedlings from seed and stem cutting propagation methods at nursery stage. Int J For Res. 2021;2021:6624266. https://doi.org/10.1155/2021/6624266

Downloads

Download data is not yet available.