Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Nanotechnology in post-harvest and shelf life enhancing: Revolutionizing food preservation

DOI
https://doi.org/10.14719/pst.6503
Submitted
3 December 2024
Published
27-11-2025

Abstract

Nanotechnology, a rapidly evolving discipline, shows remarkable promises for revolutionizing a wide range of industries, offering innovative solutions to long-lasting challenges. In the research Within the food sector, packaging and preservation, the application of nanoparticles (NPs) represents a significant breakthrough, enhancing product freshness, safety and reducing waste. Widely studied NPs such as copper oxide (CuO), silver (Ag), magnesium oxide (MgO), titanium dioxide (TiO2), silicon dioxide (SiO2), zinc oxide (ZnO), carbon dots, graphene, chitosan and mesoporous particles have demonstrated remarkable potential in extending product’s freshness and reduce safety risks by inhibiting microbial growth and lowering spoilage in tomato, broccoli, spinach and other green vegetables.  This review highlights the utilization of NPs, including Ag, ZnO, TiO2, SiO2, nanoclay and nanochitosan as well as nanoencapsulation techniques, in food systems. Furthermore, it explores how nanotechnology can revolutionize food packaging and preservation by enabling more effective, efficient and environmentally sustainable practices, ultimately contributing to a greener and more secure global food supply chain.

References

  1. 1. Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A. Global food losses and food waste. FAO Rome; 2011.
  2. 2. FAO. Food Losses and Waste in Europe and Central Asia. Rome,Italy; 2014.
  3. 3. Trostle R. Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. 2008
  4. 4. Kitinoja L, Gorny JR. Postharvest technology for small-scale produce marketers: economic opportunities, quality and food safety. 1999
  5. 5. Kader AA, Rolle RS. The role of post-harvest management in assuring the quality and safety of horticultural produce. Vol. 152. Food and Agriculture Org.; 2004.
  6. 6. Bai L, Liu M, Sun Y. Overview of food preservation and traceability technology in the smart cold chain system. Foods. 2023;12(15):2881. https://doi.org/10.3390/foods12152881
  7. 7. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ Chem Lett. 2021;19:1715-35. https://doi.org/10.1007/s10311-020-01126-2
  8. 8. Sommer NE, Fortlage RJ, Edwards DC. Postharvest diseases of selected commodities. 1992
  9. 9. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, et al. Application of bioplastics for food packaging. Trends Food Sci Technol. 2013;32(2):128-41. https://doi.org/10.1016/j.tifs.2013.06.003
  10. 10. Alhendi A, Choudhary R. Current practices in bread packaging and possibility of improving bread shelf life by nanotechnology. Int J Food Sci Nutr. 2013;3(4):55-60.
  11. 11. Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: an untapped resource for food packaging. Front Microbiol. 2017;8:1735. https://doi.org/10.3389/fmicb.2017.01735
  12. 12. Wesley SJ, Raja P, Raj AA, Tiroutchelvamae D. Review on-nanotechnology applications in food packaging and safety. Int J Eng Res. 2014;3(11):645-51. https://doi.org/10.17950/ijer/v3s11/1105
  13. 13. Saharan BS, Sharma D, Sahu R, Sahin O, Warren A. Towards algal biofuel production: a concept of green bio energy development. Innov Rom Food Biotechnol. 2013;12:1.
  14. 14. Manjunatha SB, Biradar DP, Aladakatti YR. Nanotechnology and its applications in agriculture: A review. J farm Sci. 2016;29(1):1-13.
  15. 15. Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech. 2018;8:1-13. https://doi.org/10.1007/s13205-018-1104-7
  16. 16. Lim LT. Active and intelligent packaging materials; 2019. https://doi.org/10.1016/B978-0-444-64046-8.00248-2
  17. 17. Pal M. Nanotechnology: a new approach in food packaging. J Food Microbiol Saf Hyg. 2017;2(02):8-9. https://doi.org/10.4172/2476-2059.1000121
  18. 18. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ Chem Lett. 2021;19:1715-35. https://doi.org/10.1007/s10311-020-01126-2
  19. 19. Pardo G, Zufía J. Life cycle assessment of food-preservation technologies. J Clean Prod. 2012;28:198-207. https://doi.org/10.1016/j.jclepro.2011.10.016
  20. 20. Bai L, Liu M, Sun Y. Overview of food preservation and traceability technology in the smart cold chain system. Foods. 2023;12(15):2881. https://doi.org/10.3390/foods12152881
  21. 21. Rossini K, Noreña CPZ, Brandelli A. Changes in the color of white chocolate during storage: potential roles of lipid oxidation and non-enzymatic browning reactions. J Food Sci Technol. 2011;48:305-11. https://doi.org/10.1007/s13197-010-0207-x
  22. 22. Emadpour M, Ghareyazie B, Kalaj YR, Entesari M, Bouzari N. Effect of the potassium permanganate coated zeolite nanoparticles on the quality characteristic and shelf life of peach and nectarine. 2015
  23. 23. Linde GA, Laverde Jr A, Colauto NB. Changes to taste perception in the food industry: use of cyclodextrins. In: Handbook of Behavior, Food and Nutrition. Springer; 2011. p. 99-118 https://doi.org/10.1007/978-0-387-92271-3_8
  24. 24. Verma DK, Thakur M, Srivastav PP, Karizaki VM, Suleria HAR. Effects of drying technology on physiochemical and nutritional quality of fruits and vegetables. In: Emerging Thermal and Nonthermal Technologies in Food Processing. Apple Academic Press; 2020. p. 69-116 https://doi.org/10.1201/9780429297335-3
  25. 25. Cyras VP, Manfredi LB, Ton-That MT, Vázquez A. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym. 2008;73(1):55-63. https://doi.org/10.1016/j.carbpol.2007.11.014
  26. 26. Elik A, Yanik DK, Istanbullu Y, Guzelsoy NA, Yavuz A, Gogus F. Strategies to reduce post-harvest losses for fruits and vegetables. Strategies. 2019;5(3):29-39.
  27. 27. Guan W, Zhang J, Yan R, Shao S, Zhou T, Lei J, et al. Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus). Food Chem. 2016;210:129-34. https://doi.org/10.1016/j.foodchem.2016.04.023
  28. 28. Meireles A, Giaouris E, Simões M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International. 2016;82:71-85. https://doi.org/10.1016/j.foodres.2016.01.021
  29. 29. Barbosa AAT, de Araújo HGS, Matos PN, Carnelossi MAG, de Castro AA. Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. Int J Food Microbiol. 2013;164(2-3):135-40. https://doi.org/10.1016/j.ijfoodmicro.2013.04.004
  30. 30. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, et al. Facets of nanotechnology as seen in food processing, packaging and preservation industry. Biomed Res Int. 2015;2015(1):365672. https://doi.org/10.1155/2015/365672
  31. 31. Tayel AA, Sorour NM, El-Baz AF, Wael F. Nanometals appraisal in food preservation and food-related activities. In: Food preservation. Elsevier; 2017. p. 487-526. https://doi.org/10.1016/B978-0-12-804303-5.00014-6
  32. 32. Bouwmeester H, Brandhoff P, Marvin HJP, Weigel S, Peters RJB. State of the safety assessment and current use of nanomaterials in food and food production. Trends Food Sci Technol. 2014;40(2):200-10. https://doi.org/10.1016/j.tifs.2014.08.009
  33. 33. Iavicoli I, Leso V, Beezhold DH, Shvedova AA. Nanotechnology in agriculture: Opportunities, toxicological implications and occupational risks. Toxicol Appl Pharmacol. 2017;329:96-111. https://doi.org/10.1016/j.taap.2017.05.025
  34. 34. Peters R, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, et al. Nanomaterials for application in agriculture. Feed and Food.
  35. 35. Kondle R, Sharma K, Singh G, Kotiyal A. Using nanotechnology for enhancing the shelf life of fruits. In: Food Processing and Packaging Technologies-Recent Advances. IntechOpen; 2022. https://doi.org/10.5772/intechopen.108724
  36. 36. de Oliveira Filho JG, Bertolo MRV, da Costa Brito S, Malafatti JOD, Bertazzo GB, Colacique MN, et al. Recent advances in the application of nanotechnology to reduce fruit and vegetable losses during post-harvest. Brazilian Journal of Physics. 2022;52(4):126.https://doi.org/10.1007/s13538-022-01132-5
  37. 37. Perez-Vazquez A, Barciela P, Carpena M, Prieto MA. Edible coatings as a natural packaging system to improve fruit and vegetable shelf life and quality. Foods. 2023;12:3570. https://doi.org/10.3390/foods12193570
  38. 38. Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K. Application of nanotechnology in food packaging: Pros and cons. J Agric Food Res. 2022;7:100270. https://doi.org/10.1016/j.jafr.2022.100270
  39. 39. Gao L. Sol-gel synthesis of silica nanoparticles for food packaging applications. J Food Sci. 2017;82(5):1206-14.
  40. 40. Brigger I. Sol-gel method for synthesis of bioactive nanoparticle systems in food packaging. Food Res Int. 2018;113:1017-26
  41. 41. Bikiaris DN. Electrospun nanofibers for food packaging applications: A review. Food Res Int. 2016;85:270-85.
  42. 42. Saeed M. Electrospinning for food preservation and packaging: Current trends and future directions. Food Packag Shelf Life. 2018;16:156-65.
  43. 43. Dahmouche K. Nanoprecipitation technique for preparing nanoparticles used in food packaging. Int J Food Sci Technol. 2019;54(5):1572-81.
  44. 44. Arora A. Nanoprecipitation as a technique for food preservation: Enhancing shelf life and bioactive compound stability. Food Biophys. 2019;14(3):300-09.
  45. 45. Ranjan S. Emulsion polymerization for nanoparticle synthesis in food preservation. Food Biophys. 2019;14(3):246-59.
  46. 46. Morsi RE. Emulsion polymerization for the synthesis of nanoparticles in food packaging materials. J Food Sci. 2020;85(4):1078-87.
  47. 47. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736-37. https://doi.org/10.1021/ja040082h
  48. 48. Liu J, Chen Y, Wang W, Feng J, Liang M, Ma S, et al. "Switch-on" fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe. J Agric Food Chem. 2015;64(1):371-80. https://doi.org/10.1021/acs.jafc.5b05726
  49. 49. Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, et al. A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sens Actuators B Chem. 2014;202:201-08. https://doi.org/10.1016/j.snb.2014.05.058
  50. 50. Ahmed GHG, Laıno RB, Calz JA, Garcıa MED. Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta. 2015;132:252-57. https://doi.org/10.1016/j.talanta.2014.09.028
  51. 51. Wang R, Xu Y, Zhang T, Jiang Y. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal Methods. 2015;7(5):1701-06. https://doi.org/10.1039/C4AY02880E
  52. 52. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, et al. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron. 2016;78:23-30. https://doi.org/10.1016/j.bios.2015.11.015
  53. 53. Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E. Combined alkyl and sulfonic acid functionalization of MCM-41-type silica - Part 1. Synthesis and characterization. J Catal. 2000;193:283-94. https://doi.org/10.1006/jcat.2000.2898
  54. 54. Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E. Combined alkyl and sulfonic acid functionalization of MCM-41-type silica - Part 2. Esterification of glycerol with fatty acids. J Catal. 2000;193:295-302. https://doi.org/10.1006/jcat.2000.2899
  55. 55. Díaz I, Mohino F, Blasco T, Sastre E, Pérez-Pariente J. Influence of the alkyl chain length of HSO3-RMCM-41 on the esterification of glycerol with fatty acids. Microporous Mesoporous Mater. 2005;80:33-42. https://doi.org/10.1016/j.micromeso.2004.11.011
  56. 56. Márquez-Alvarez C, Sastre E, Pérez-Pariente J. Solid catalysts for the synthesis of fatty esters of glycerol, polyglycerols and sorbitol from renewable resources. Top Catal. 2004;27:105-17. https://doi.org/10.1023/B:TOCA.0000013545.81809.bd
  57. 57. Thomas JM, Raja R. The advantages and future potential of single-site heterogeneous catalysts. Top Catal. 2006;40:3-17. https://doi.org/10.1007/s11244-006-0105-7
  58. 58. Yadav GD, Lande SV. Selective Claisen rearrangement of allyl-2,4-di-tert-butylphenyl ether to 6-allyl-2,4-di-tert-butylphenol catalysed by heteropolyacid supported on hexagonal mesoporous silica. J Mol Catal A Chem. 2006;243:31-39. https://doi.org/10.1016/j.molcata.2005.08.003
  59. 59. Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut. 2009;157(4):1171-77. https://doi.org/10.1016/j.envpol.2008.11.004
  60. 60. Zhang YW, Tiwari MK, Jeya M, Lee JK. Covalent immobilization of recombinant Rhizobium etli CFN42 xylitol dehydrogenase onto modified silica nanoparticles. Appl Microbiol Biotechnol. 2011;90:499-507. https://doi.org/10.1007/s00253-011-3094-9
  61. 61. Zhang J, Yu MH, Yuan P, Lu GQ, Yu CZ. Controlled release of volatile (-)-menthol in nanoporous silica materials. J Incl Phenom Macrocycl Chem. 2011;71:593-602. https://doi.org/10.1007/s10847-011-9996-4
  62. 62. Almeida MG, Serra A, Silveira CM, Moura JJG. Nitrite biosensing via selective enzymes - A long but promising route. Sensors (Basel). 2010;10:11530-55. https://doi.org/10.3390/s101211530
  63. 63. Hashim N, Abdullah S, Yusoh K. Graphene nanomaterials in the food industries: quality control in promising food safety to consumers. Graphene 2D Mater. 2022;7(1):1-29. https://doi.org/10.1007/s41127-021-00045-5
  64. 64. Huang M, Wan X, Zhang M, Zhu Q. Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image. J Food Eng. 2013;116(1):45-49. https://doi.org/10.1016/j.jfoodeng.2012.11.014
  65. 65. Wang R, Zhang M, Mujumdar AS, Sun JC. Microwave freeze-drying characteristics and sensory quality of instant vegetable soup. Drying Technology. 2009;27(9):962-68. https://doi.org/10.1080/07373930902902040
  66. 66. Xu Y, Zhang M, Tu D, Sun J, Zhou L, Mujumdar AS. A two-stage convective air and vacuum freeze-drying technique for bamboo shoots. Int J Food Sci Technol. 2005;40(6):589-95. https://doi.org/10.1111/j.1365-2621.2005.00956.x
  67. 67. Yan W, Zhang M, Huang L, Tang J, Mujumdar AS, Sun J. Studies on different combined microwave drying of carrot pieces. Int J Food Sci Technol. 2010;45(10):2141-48. https://doi.org/10.1111/j.1365-2621.2010.02380.x
  68. 68. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review. Compos B Eng. 2015;77:402-20. https://doi.org/10.1016/j.compositesb.2015.03.014
  69. 69. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos Sci Technol. 2009;69(11-12):1756-63. https://doi.org/10.1016/j.compscitech.2008.10.005
  70. 70. Liu SF, Petty AR, Sazama GT, Swager TM. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angewandte Chemie International Edition. 2015;54(22):6554-57. https://doi.org/10.1002/anie.201501434
  71. 71. Abdelhalim A, Abdellah A, Scarpa G, Lugli P. Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing. Carbon N Y. 2013;61:72-79. https://doi.org/10.1016/j.carbon.2013.04.069
  72. 72. Asgari P, Moradi O, Tajeddin B. The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Int Nano Lett. 2014;4:1-5. https://doi.org/10.1007/s40089-014-0098-3
  73. 73. Alexandre B, Langevin D, Médéric P, Aubry T, Couderc H, Nguyen QT, et al. Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Memb Sci. 2009;328(1-2):186-204. https://doi.org/10.1016/j.memsci.2008.12.004
  74. 74. Luduena LN, Alvarez VA, Vazquez A. Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering: A. 2007;460:121-29. https://doi.org/10.1016/j.msea.2007.01.104
  75. 75. Weiss J, Takhistov P, McClements DJ. Functional materials in food nanotechnology. J Food Sci. 2006;71(9):R107-16. https://doi.org/10.1111/j.1750-3841.2006.00195.x
  76. 76. Montazer M, Harifi T. New approaches and future aspects of antibacterial food packaging: from nanoparticles coating to nanofibers and nanocomposites, with foresight to address the regulatory uncertainty. In: Food packaging. Elsevier; 2017. p. 533-65. https://doi.org/10.1016/B978-0-12-804302-8.00016-9
  77. 77. Gutiérrez TJ, Ponce AG, Alvarez VA. Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Mater Chem Phys. 2017;194:283-92. https://doi.org/10.1016/j.matchemphys.2017.03.052
  78. 78. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, et al. Effect of nano-ZnO-coated active packaging on quality of fresh-cut 'Fuji'apple. Int J Food Sci Technol. 2011;46(9):1947-55. https://doi.org/10.1111/j.1365-2621.2011.02706.x
  79. 79. Luo Z, Wang Y, Jiang L, Xu X. Effect of nano-CaCO3-LDPEpackaging on quality and browning of fresh-cut yam. LWT-Food Science and Technology. 2015;60(2):1155-61. https://doi.org/10.1016/j.lwt.2014.09.021
  80. 80. Sogvar OB, Saba MK, Emamifar A, Hallaj R. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science Emerging Technologies. 2016;35:168-76. https://doi.org/10.1016/j.ifset.2016.05.005
  81. 81. Shi S, Wang W, Liu L, Wu S, Wei Y, Li W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng. 2013;118(1):125-31. https://doi.org/10.1016/j.jfoodeng.2013.03.029
  82. 82. Mohammadi A, Hashemi M, Hosseini SM. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innovative Food Science Emerging Technologies. 2016;33:580-88.https://doi.org/10.1016/j.ifset.2015.10.015
  83. 83. Esyanti RR, Zaskia H, Amalia A, Nugrahapraja dan H. Chitosan nanoparticle-based coating as post-harvest technology in banana. In: Journal of Physics: Conference Series. IOP Publishing; 2019. p. 012109. https://doi.org/10.1088/1742-6596/1204/1/012109
  84. 84. Pandey CM, Tiwari I, Singh VN, Sood KN, Sumana G, Malhotra BD. Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure detection of pathogenic bacteria. Sens Actuators B Chem. 2017;238:1060-69.https://doi.org/10.1016/j.snb.2016.07.121
  85. 85. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S. Commercial application of cellulose nano-composites-A review. Biotechnology Reports. 2019;21:e00316. https://doi.org/10.1016/j.btre.2019.e00316
  86. 86. Ferrer A, Pal L, Hubbe M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind Crops Prod. 2017;95:574-82. https://doi.org/10.1016/j.indcrop.2016.11.012
  87. 87. Naicker PK, Cummings PT, Zhang H, Banfield JF. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B. 2005;109(32):15243-49. https://doi.org/10.1021/jp050963q
  88. 88. Martelli MR, Barros TT, de Moura MR, Mattoso LHC, Assis OBG. Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci. 2013;78(1):N98-104. https://doi.org/10.1111/j.1750-3841.2012.03006.x
  89. 89. Arora A, Padua GW. Nanocomposites in food packaging. J Food Sci. 2010;75(1):R43-49. https://doi.org/10.1111/j.1750-3841.2009.01456.x
  90. 90. Kumar N, Kumbhat S. Essentials in nanoscience and nanotechnology. John Wiley and Sons; 2016. https://doi.org/10.1002/9781119096122
  91. 91. Morán D, Gutiérrez G, Blanco-López MC, Marefati A, Rayner M, Matos M. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Applied Sci. 2021;11(10):4547. https://doi.org/10.3390/app11104547
  92. 92. Campelo PH, Sant'Ana AS, Clerici MTPS. Starch nanoparticles: production methods, structure and properties for food applications. Curr Opin Food Sci. 2020;33:136-40. https://doi.org/10.1016/j.cofs.2020.04.007
  93. 93. Zubair M, Ullah A. Recent advances in protein derived bio nanocomposites for food packaging applications. Crit Rev Food Sci Nutr. 2020;60(3):406-34. https://doi.org/10.1080/10408398.2018.1534800
  94. 94. Li X, Ji N, Qiu C, Xia M, Xiong L, Sun Q. The effect of peanut protein nanoparticles on characteristics of protein-and starch-based nanocomposite films: A comparative study. Ind Crops Prod. 2015;77:565-74. https://doi.org/10.1016/j.indcrop.2015.09.026
  95. 95. Karthi JS, Johar V, Singh V, Rani S. Edible coatings: Innovation to improve the shelf life of guava. Int J Plant Soil Sci. 2023;35:125-35. https://doi.org/10.9734/ijpss/2023/v35i143028
  96. 96. Sami R, Elhakem A, Almushhin A, Alharbi M, Almatrafi M, Benajiba N, et al. Enhancement in physicochemical parameters and microbial populations of mushrooms as influenced by nano-coating treatments. Scientific Reports. 2021;11(1):7915. https://doi.org/10.1038/s41598-021-87053-w
  97. 97. Wu R, Ma Y, Pan J, Lee SH, Liu J, Zhu H, et al. Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor. Biosens Bioelectron. 2018;101:52-59. https://doi.org/10.1016/j.bios.2017.10.003
  98. 98. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials (Basel). 2020;10(8):1566. https://doi.org/10.3390/nano10081566
  99. 99. Rajeshkumar S, Malarkodi C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl. 2014;2014:581890. https://doi.org/10.1155/2014/581890
  100. 100. Carbone M, Donia DT, Sabbatella G, Antiochia R. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Uni-Sci. 2016;28(4):273-79. https://doi.org/10.1016/j.jksus.2016.05.004
  101. 101. Kraśniewska K, Galus S, Gniewosz M. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications-a review. Int J Mol Sci. 2020;21(3):698. https://doi.org/10.3390/ijms21030698
  102. 102. La DD, Nguyen-Tri P, Le KH, Nguyen PT, Nguyen MDB, Vo AT, et al. Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for post-harvest banana preservation. Prog Org Coat. 2021;151:106057. https://doi.org/10.1016/j.porgcoat.2020.106057
  103. 103. Meindrawan B, Suyatma NE, Wardana AA, Pamela VY. Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packag Shelf Life. 2018;18:140-46. https://doi.org/10.1016/j.fpsl.2018.10.006
  104. 104. Kasemets K, Ivask A, Dubourguier HC, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro. 2009;23(6):1116-22. https://doi.org/10.1016/j.tiv.2009.05.015
  105. 105. Zhang L, Ding Y, Povey M, York D. ZnO nanofluids - a potential antibacterial agent. Prog Nat Sci. 2008;18(8):939-44. https://doi.org/10.1016/j.pnsc.2008.01.026
  106. 106. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: green synthesis, characterization and antibacterial activity. Mater Chem Phys. 2010;121(1-2):198-201. https://doi.org/10.1016/j.matchemphys.2010.01.020
  107. 107. Thounaojam TC, Meetei TT, Devi YB, Panda SK, Upadhyaya H. Zinc oxide nanoparticles (ZnO-NPs): A promising nanoparticle in renovating plant science. Acta Physiol Plant. 2021;43:1-21. https://doi.org/10.1007/s11738-021-03307-0
  108. 108. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J anderson AJ. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol. 2012;78(5):1404-10. https://doi.org/10.1128/AEM.07424-11
  109. 109. Sharanya DB, Shetty D, Lakshmi GMS, Packiyam JE, Bhat RP. Synthesis of chitosan silver nanoparticles from chitin of crustacean shells and its applications. Int J Curr Res Chem Pharm Sci. 2016;3:1-5.
  110. 110. Helal M, Sami R, Khojah E, Elhakem A, Benajiba N, Al-Mushhin AA, Fouda N. Evaluating the coating process of titanium dioxide nanoparticles and sodium tripolyphosphate on cucumbers under chilling condition to extend the shelf-life. Scientific Reports. 2021;11(1):20312. https://doi.org/10.1038/s41598-021-99023-3
  111. 111. Oymaci P, Altinkaya SA. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food hydrocoll. 2016;54:1-9. https://doi.org/10.1016/j.foodhyd.2015.08.030
  112. 112. Kim I, Viswanathan K, Kasi G, Thanakkasaranee S, Sadeghi K, Seo J. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects and challenges. Food Reviews International. 2022;38(4):537-65. https://doi.org/10.1080/87559129.2020.1737709
  113. 113. Mohr LC, Capelezzo AP, Baretta C, Martins M, Fiori MA, Mello JMM. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polym Test. 2019;77:105867. https://doi.org/10.1016/j.polymertesting.2019.04.014
  114. 114. Sungur Ş, Kaya P, Koroglu M. Determination of titanium dioxide nanoparticles used in various foods. Food Additives Contaminants: Part B. 2020;13(4):260-67. https://doi.org/10.1080/19393210.2020.1769193
  115. 115. Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nano Res. 2014;16:1-23. https://doi.org/10.1007/s11051-014-2464-5
  116. 116. Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38(10-11):1629-52. https://doi.org/10.1016/j.progpolymsci.2013.05.008
  117. 117. Brandelli A, Brum LFW, dos Santos JHZ. Nanostructured bioactive compounds for ecological food packaging. Environ Chem Lett. 2017;15:193-204. https://doi.org/10.1007/s10311-017-0621-7
  118. 118. Joshi H, Choudhary P, Mundra SL. Future prospects of nanotechnology in agriculture. Int J Chem Stud. 2019;7(2):957-63.
  119. 119. Mousavi SR, Rezaei M. Nanotechnology in agriculture and food production. J Appl Environ Biol Sci. 2011;1(10):414-19.
  120. 120. Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR. Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem. 2004;162(2-3):253-59. https://doi.org/10.1016/j.nainr.2003.08.010
  121. 121. Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr. 2011;51(8):723-30.https://doi.org/10.1080/10408391003785417
  122. 122. Lee SJ, Rahman ATMM. Intelligent packaging for food products. In: Innovations in food packaging. Elsevier; 2014. p. 171-209. https://doi.org/10.1016/B978-0-12-394601-0.00008-4
  123. 123. Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B Chem. 2005;107(2):849-55. https://doi.org/10.1016/j.snb.2004.12.026
  124. 124. Borchert NB, Kerry JP, Papkovsky DB. A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sens Actuators B Chem. 2013;176:157-65. https://doi.org/10.1016/j.snb.2012.09.043
  125. 125. Puligundla P, Jung J, Ko S. Carbon dioxide sensors for intelligent food packaging applications. Food Control. 2012;25(1):328-33.https://doi.org/10.1016/j.foodcont.2011.10.043
  126. 126. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, et al. Quantum dots: synthesis, bioapplications and toxicity. Nanoscale Res Lett. 2012;7:1-14. https://doi.org/10.1186/1556-276X-7-480
  127. 127. Fuertes G, Soto I, Carrasco R, Vargas M, Sabattin J, Lagos C. Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. J Sens. 2016;2016(1):4046061. https://doi.org/10.1155/2016/4046061
  128. 128. Meng JJ, Qian J, Jung SW, Lee SJ. Practicability of TTI application to yogurt quality prediction in plausible scenarios of a distribution system with temperature variations. Food Sci Biotechnol. 2018;27:1333-42. https://doi.org/10.1007/s10068-018-0371-8
  129. 129. Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E. Improving packaged food quality and safety. Part 2: Nanocomposites. Food Addit Contam. 2005;22(10):994-98. https://doi.org/10.1080/02652030500239656
  130. 130. Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009;27(2):82-89. https://doi.org/10.1016/j.tibtech.2008.10.010
  131. 131. Predicala B. Nanotechnology: potential for agriculture. Prairie Swine Centre Inc, University of Saskatchewan, Saskatoon, SK. 2009:123-34.
  132. 132. Li HongMei LH, Li Feng LF, Wang Lin WL, Sheng JianChun SJ, Xin ZhiHong XZ, Zhao LiYan ZL, et al. Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). 2009
  133. 133. Oh SK, Choi D, Yu SH. Development of integrated pest management techniques using biomass for organic farming (-): Suppresssion of late blight and Fusarium Wilt of tomato by chitosan involving both antifungal and plant activating activities. Plant Pathol J. 1998;14(3):278-85.
  134. 134. Romanazzi G, Nigro F, Ippolito A, DiVenere D, Salerno M. Effects of pre-and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci. 2002;67(5):1862-7. https://doi.org/10.1111/j.1365-2621.2002.tb08737.x
  135. 135. Liu J, Tian S, Meng X, Xu Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol Technol. 2007;44(3):300-06. https://doi.org/10.1016/j.postharvbio.2006.12.019
  136. 136. Rabea EI, Badawy MET, Stevens V, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457-65. https://doi.org/10.1021/bm034130m
  137. 137. Bhardwaj R, Gupta A, Garg A, Sharma J, Thakur N. Nanoencapsulation: A promising technique for food and pharmaceutical industry. Food Biophys. 2016;10(4):417-26.
  138. 138. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. https://doi.org/10.1016/j.addr.2012.09.037
  139. 139. Kukuda M. Micelle systems: Structure and function. Colloid Polym Sci. 2016;294(4):491-502.
  140. 140. Bajpai SK. Polymeric nanoparticles: A review. Adv Mater Res. 2016;1189:56-62.
  141. 141. Mayer JA. Traditional and novel encapsulation techniques for bioactive compounds. Compr Rev Food Sci Food Saf. 2015;14(5):555-77.
  142. 142. Azeredo HMC. Nanotechnology applications in food packaging. Food Res Int. 2020;137:109369.
  143. 143. Jiang X. Nanoencapsulation for food applications: A review. Food Chem. 2016;265:263-70.
  144. 144. Santos MA. Nanoparticles as drug delivery systems: A review. Pharm Nanocarriers. 2017;1:1-10.
  145. 145. Rohman A. Application of nanotechnology in food packaging: A review. Food Res Int. 2015;74:8-16.
  146. 146. Luo Y. Nanotechnology in food packaging: From materials to the market. Trends Food Sci Technol. 2018;76:93-102.
  147. 147. Zhao L. Nanotechnology-based drug delivery for cancer treatment. Pharm Res. 2017;34(3):473-84.
  148. 148. Rathod VK. Nanotechnology for food applications. Food Sci Biotechnol. 2016;25(3):515-22.
  149. 149. Tripathi P, Dubey NK. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol. 2004;32(3):235-45. https://doi.org/10.1016/j.postharvbio.2003.11.005
  150. 150. PK, Shukla RN, Srivastava G, Mishra AA, Pandey A. Study on quality parameters and storage stability of mango coated with developed nanocomposite edible film. Int J Curr Microbiol Appl Sci. 2019;8(4):2899-935. https://doi.org/10.20546/ijcmas.2019.804.339
  151. 151. Chakraborty R, Mahanty B, Ghosh SK. Nanomaterials for food packaging: Sustainable strategies and applications. Food Sci Technol Int. 2020.
  152. 152. Arias LS, Pessan JP, Vieira AP, Lima TM, Delbem ACB, Monteiro DR. Toxicological effects of nanoparticles on human health and the environment: A review. Environ Toxicol Pharmacol. 2020.
  153. 153. European Food Safety Authority (EFSA). Scientific opinion on the safety of nanoparticles in food. EFSA J. 2020.
  154. 154. Seeger D, Müller T, Rehn M. Nanoparticles in food packaging materials: Environmental and health risks. Environ Sci Pollut Res Int. 2018.
  155. 155. Awlqadr FH, Altemimi AB, Omar AMA, Saeed MN, Qadir SA, Faraj AM, et al. Advancing sustainability in fruit and vegetable packaging: The role of nanotechnology in food preservation. eFood. 2025;6(3). https://doi.org/10.1002/efd2.70060
  156. 156. He X, Deng H, Aker WG, Hwang H. Regulation and safety of nanotechnology in the food and agriculture industry. In: CRC Press eBooks; 2019. p. 525-36. https://doi.org/10.1201/9780429297038-23
  157. 157. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environ Chem Lett. 2021;19(2):1715-35. https://doi.org/10.1007/s10311-020-01126-2
  158. 158. Istiqola A, Syafiuddin A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration and future challenges. J Chin Chem Soc. 2020;67(11):1942-56. https://doi.org/10.1002/jccs.202000179
  159. 159. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry - Recent developments, risks and regulation. Trends Food Sci Technol. 2011;24(1):30-36. https://doi.org/10.1016/j.tifs.2011.10.006
  160. 160. Ghebretatios M, Schaly S, Prakash S. Nanoparticles in the food industry and their impact on human gut microbiome and diseases. Int J Mol Sci. 2021;22(4):1-24. https://doi.org/10.3390/ijms22041942

Downloads

Download data is not yet available.