Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Antihypertensive and vasorelaxant effects of Salvia tingitana in rats

DOI
https://doi.org/10.14719/pst.6510
Submitted
3 December 2024
Published
29-04-2025 — Updated on 26-07-2025
Versions

Abstract

Salvia tingitana (S. tingitana) is a medicinal and aromatic plant that belongs to the Lamiaceae family with several medicinal properties. Secondary metabolites, including flavonoids, polyphenols and tannins, were identified through phytochemical analysis of the aerial parts of S. tingitana. In addition, pharmacological investigation revealed this plants’ antihyperglycemic and antihyperlipidemic activities. This study aimed to investigate the antihypertensive and vasorelaxant activities of the aqueous extract of S. tingitana (AEST) in normal and L-NAME-induced hypertensive rats by assessing its effects on heart rate (HR), systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP). The study further investigated the vasorelaxant effect of AEST on isolated rat thoracic aorta and elucidated the underlying mechanisms. As a result, AEST significantly lowered SBP after single and repeated oral administration in normal rats without affecting MBP, DBP and heart rate. Interestingly, after repeated oral AEST administration, arterial blood pressure parameters (SABP, DBP and MBP) significantly decreased in hypertensive rats. The vasorelaxation effect induced by AEST in aortic rings was mediated through numerous pathways involving calcium channels, nitric oxide synthase, muscarinic receptors and inward-rectifying potassium channels. In contrast, the pretreatment with methylene blue, glibenclamide, indomethacin and propranolol did not significantly alter AEST-induced vasorelaxation. The study showed that AEST exhibits a significant antihypertensive effect in L-NAME-rats and exhibits vasorelaxant properties in rat aortic rings via mechanisms involving calcium channels, nitric oxide synthase, muscarinic receptors and inward-rectifying K+ Channels. Interestingly, many further studies on the structure-activity relationship of S. tingitana are needed to explain the mechanisms of action that have been revealed.

References

  1. 1. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization; 2011. p. 155.
  2. 2. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, et al. Prevalence, awareness, treatment and control of hypertension in rural and urban communities in high-, middle- and low-income countries. JAMA. 2013;310(9):959–68. https://doi.org/10.1001/jama.2013.184182
  3. 3. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334–57. https://doi.org/10.1161/hypertensionaha.120.15026
  4. 4. Eddouks M, Maghrani M, Lemhadri A, Ouahidi ML, Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). 2002;82(2-3):97–103 https://doi.org/10.1016/S03788741(02)00164-2
  5. 5. Patrignani F, Prasad S, Novakovic M, Marin PD, Bukvicki D. 612 Lamiaceae in the treatment of cardiovascular diseases. Fron Biosci. 2021;26(4):612–43. https://doi.org/10.2741/4909
  6. 6. Azzane A, Amssayef A, Eddouks, M. Salvia aucheri Exhibits Antihypertensive Activity in Hypertensive Rats. Cardiovasc Hematol Agents Med Chem. 2023;21(3):167–76. https://doi.org/10.2174/1871525721666221221163432
  7. 7. Wu R, Zhou Y, Xu H, Zhao W, Zhou L, Zhao Y, et al. Aqueous extract of Salvia miltiorrhiza Bunge reduces blood pressure through inhibiting oxidative stress, inflammation and fibrosis of adventitia in primary hypertension. Front Pharmacol. 2023;14:1093669. https://doi.org/10.3389/fphar.2023.1093669
  8. 8. Foley MJY, Hedge IC, Möller M. The enigmatic Salvia tingitana (Lamiaceae): a case study in history, taxonomy and cytology. Willdenowia. 2008;38(1):41. https://doi.org/10.3372/wi.38.38102
  9. 9. Ravera S, Esposito A, Degan P, Caicci F, Manni L, Liguori A, et al. The diterpene Manool extracted from Salvia tingitana lowers free radical production in retinal rod outer segments by inhibiting the extramitochondrial F1Fo ATP synthase. Cell Biochem Funct. 2021;39(4):528–35. https://doi.org/10.1002/cbf.3618
  10. 10. Azzane A, Eddouks M. Antihyperglycemic, Antihyperlipidemic and Antioxidant Effects of Salvia tingitana in Streptozotocin-Induced Diabetic Rats. Cardiovasc Haematol Dis Drug Targets. 2022;22(2):118–27. https://doi.org/10.2174/1871529X22666220806122012
  11. 11. Bisio A, Schito AM, Pedrelli F, et al. Antibacterial and ATP synthesis modulating compounds from Salvia tingitana. J Nat Prod. 2020;83(4):1027–42. https://doi.org/10.1021/acs.jnatprod.9b01024
  12. 12. Azzane A, Farid O, Eddouks M. Antihyperglycemic and Antidyslipidemic Effects of Artemisia arborescens Aqueous Extract on Streptozotocin-induced Diabetic Rats. Cardiovasc Hematol Agents Med Chem. 2023;21(2):120–38. https://doi.org/10.2174/1871525720666220425094135
  13. 13. Azzane A, Amssayef A, Eddouks M. Antihyperglycemic and Antidyslipidemic Effect of Moricandia Suffruticosa in Normal and Streptozotocin-induced Diabetic Rats. Cardiovasc Haematol Dis-Drug Targets. 2022;22(1):58–66. https://doi.org/10.2174/1871529X22666220513124452
  14. 14. Azzane A, Amssayef A, El-Haidani A, Eddouks M. Effect of Pulicaria mauritanica on Glucose Metabolism and Glycogen Content in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Agents Med Chem. 2022;20(3):197–211. https://doi.org/10.2174/1871525720666220510204624
  15. 15. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43. https://doi.org/10.1074/jbc.M200581200
  16. 16. Boua BB, Kouassi KC, Mamyrbékova-Békro J.A, Kouamé B.A, Békro Y. A. Études Chimique et Pharmacologique de Deux Plantes Utilisées Dans le Traitement Traditionnel de L’hypertension Artérielle à Assoumoukro (Côte D’ivoire). Eur J Sci Res. 2013;97(3):448–62.
  17. 17. Rawat P, Singh PK, Vipin K. Antihypertensive Medicinal Plants and their Modof Action. J Herbal Med. 2016;6(3):107–18. https://doi.org/10.1016/j.hermed.2016.06.001
  18. 18. Study Z, Keli SO, Hertog MGL, Feskens EJM, Kromhout D. Dietary Flavonoids, Antioxidant Vitamins and Incidence of Stroke: the Zutphen study. Arch Int Med.1996;156(6):637–42. https://doi.org/10.1001/archinte.1996.00440060059007
  19. 19. Wu TW, Chu YC, Chang CH, Hsieh YH, Tang MH, Hsu PH, et al. Flavonol?Ruthenium Complexes as Antioxidant and Anticancer Agents. ChemMedChem. 2024;19(24):e202400313. https://doi.org/10.1002/cmdc.202400313
  20. 20. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6. https://doi.org/10.1038/327524a0
  21. 21. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. The Lancet. 1987;330(8567):1057–8. https://doi.org/10.1016/S0140-6736(87)91481-4
  22. 22. Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. The Ocular Surface. 2021;21:37–51. https://doi.org/10.1016/j.jtos.2021.04.007
  23. 23. Jackson RE, Bellamy MC. Antihypertensive drugs. BJA education. 2015;15(6):280–5. https://doi.org/10.1093/bjaceaccp/mku061
  24. 24. Adeneye A. Herbal Pharmacotherapy of Hypertension. Phytother Manag Diabetes Hypertens. In: Eddouks M, editor. Phytotherapy in the Management of Diabetes and Hypertension. London: Bentham Book; 2016.p. 3-71.
  25. 25. Tan CS, Loh YC, Ng CH, Ch’ng YS, Asmawi MZ, Ahmad M, et al. Antihypertensive and vasodilatory effects of amended Banxia Baizhu Tianma Tang. Biomed Pharmacother. 2018;97(2):985–94. https://doi.org/10.1016/j.biopha.2017.11.021
  26. 26. Tan CS, Ch’ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF. Vasorelaxation effect of Glycyrrhizae uralensis through the endothelium-dependent Pathway. J Ethnopharmacol. 2017;199:149–60. https://doi.org/10.1016/j.jep.2017.02.001
  27. 27. Rahman T, Khan MOF. Ca+ 2 Channel Blockers. In: Medicinal Chemistry for Pharmacy Students. Bentham Science Publishers; 2024;40–69. https://doi.org/10.2174/97898151797291240301
  28. 28. Sawasaki K, Nakamura M, Kimura N, Kawahito K, Yamazaki M, Fujie H, et al. Endothelial-derived nitric oxide impacts vascular smooth muscle cell phenotypes under high wall shear stress conditions. Biochem Biophys Res Commun; 2024;151005. https://doi.org/10.1016/j.bbrc.2024.151005
  29. 29. Malmström RE, Weitzberg E. Endothelin and nitric oxide in inflammation: Could there be a need for endothelin blocking anti-inflammatory drugs? J Hypertens. 2004;22(1):27–9. https://doi.org/10.1097/01.hjh.0000098170.36890
  30. 30. Grisham MB, Miles AM. Effects of aminosalicylates and immunosuppressive agents on nitric oxide-dependent N-nitrosation reactions. Biochem Pharmacol. 1994;47(10):1897–1902. https://doi.org/10.1016/0006-2952(94)90320-4
  31. 31. Oh SJ. 19 Treatment and Management of Disorders of the Neuromuscular Junction. Neuromuscular Disorders: Treatment and Management. 2021;446. https://doi.org/10.1016/B978-0-323-71317-7.00019-6
  32. 32. Cao YX, Zheng JP, He JY, Li J, Xu CB, Edvinsson L. Atropine Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated Ca2+-Influx and Ca2+-Release. Vol. 28, Arch Pharm Res. 2005;28(6):709–15. https://doi.org/10.1007/BF02969362
  33. 33. Dawes M, Sieniawska C, Delves T, Dwivedi R, Chowienczyk PJ, Ritter JM. Barium reduces resting blood flow and inhibits potassium-induced vasodilation in the human forearm. Circulation. 2002;105(11):1323–8. https://doi.org/10.1161/hc1102.105651
  34. 34. Knot HJ, Zimmermann PA, Nelson MT. Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J Physiol. 1996;492(2):419–30. https://doi.org/10.1113/jphysiol.1996.sp021318
  35. 35. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 1994;372(6504):366–9. https://doi.org/10.1038/372366a0
  36. 36. Park WS, Han J, Earm YE. Physiological role of inward rectifier K+ channels in vascular smooth muscle cells. Pflugers Arch. 2008;457(1):137–47. https://doi.org/10.1007/s00424-008-0512-7
  37. 37. Yabré Z, Boly R, Khattabi C El, Ouédraogo M, Ouédraogo R, Gilchrist A, et al. African Journal of Pharmacy and Pharmacology Role of soluble guanylate cyclase and muscarinic receptors in the relaxant effect of Waltheria indica L. (Malvaceae) on tracheal smooth muscle. Afr J Pharm Pharmacol. 2024;18(8):142–55. https://doi.org/10.5897/AJPP2024.5403

Downloads

Download data is not yet available.