Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. Sp2 (2025): Current Trends in Plant Science and Microbiome for Sustainability

Biodiversity and potential applications of halophilic archaeal secondary metabolites

DOI
https://doi.org/10.14719/pst.6518
Submitted
4 December 2024
Published
25-06-2025

Abstract

Halophilic archaea inhabit extreme ecosystem so their enzymes are also resist to multiple extreme condition which can be utilize as biotechnological application. Pigments, enzymes and secondary metabolites produce by haloarchaea microorganism shows a potential to use in biomedicines, pharmacy and biotechnology process. Several biocompounds produced by haloarchaea like halocins, PHAs/PHBs, carotenoids and enzymes are of high biotechnology interest. Some haloarchaeal species can produce carotenoids, which can be genetically modified or can improve the cultivation parameters to get the high yield product. This haloarchaeal carotenoids show a potential use in biomedicine and by the help of a biotechnological process, its production can be done at large scale. Many halophilic enzymes like esterases, lipases, proteases and glycosyl hydrolases could be used in biotechnological application Halophilic bacteria and highly halophilic archaea which are aerobic or called as haloarchaea, assume a significant role in the industry with a huge number of applications like in food products fermentation, preservatives, cosmetics, manufacturing of bioplastics, artificial retinas, photoelectric devices, holograms, biosensors, etc.

References

  1. 1. Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A. Halophiles and their vast potential in biofuel production. Front Microbiol. 2019;10:1895. https://doi.org/10.3389/fmicb.2019.01895
  2. 2. Youssef NH, Ashlock-Savage KN, Elshahed M. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol. 2012;78:1332–44. https://doi.org/10.1128/AEM.07420-11
  3. 3. Yadav NA, Verma P, Kaushik R, Dhaliwal HS. Archaea endowed with plant growth promoting attributes. J App Biot and Biol. 2017; 294‒98.
  4. 4. Xu WD, Zhang WJ, Han D, Cui HL, Yang K. Halorussusruber sp. nov., isolated from an inland salt lake of China. Arch Microbiol. 2015;197:91–95. https://doi.org/10.1007/s00203-014-1058-z
  5. 5. Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. 2015;33:1433–42. https://doi.org/10.1016/j.biotechadv.2014.10.008
  6. 6. Velmurugan S, Raman K, Thanga V, Donio MBS, Adlin J, Babu MM, Citarasu T. Screening and characterization of antimicrobial secondary metabolites from Halomonassalifodinae MPM-TC and it’s in vivo antiviral influence on Indian white shrimp Fenneropenaeus indicus against WSSV challenge. J King Saud Univ Sci. 2013;25:181–90. https://doi.org/10.1016/j.jksus.2013.03.002
  7. 7. Tian S, Yang Y, Liu K, Xiong Z, Xu L, Zhao L. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Nat Prod Res. 2014;28:344–46. https://doi.org/10.1080/14786419.2013.858341
  8. 8. Safarpour A, Ebrahimi M, Fazeli SAS, Amoozegar MA. Supernatant metabolites from halophilic archaea to reduce tumorigenesis in prostate cancer in-vitro and in-vivo. Iran J Pharm Res. . 2019;18(1):241‒53.
  9. 9. Oberwinkler TM. Metabolic and genomic annotations in halophilic archaea. Der Ludwig-Maximilians-Universität München. 2011;1‒245.
  10. 10. Ohshida T, Hayashi J, Satomura T, Kawakami R, Ohshima T. First characterization of extremely halophilic 2-deoxy-dribose-5-phosphate aldolase. Protein Expr Purif. 2016;126:62–68. https://doi.org/10.1016/j.pep.2016.05.009
  11. 11. Li X, Yu H-Y. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 2014;59:455–63. https://doi.org/10.1007/s12223-014-0320-8
  12. 12. Li Y, Xiang H, Liu J, Zhou M, Tan H. Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles. 2003;7:401–07.https://doi.org/10.1007/s00792-003-
  13. 0335-6
  14. 13. Litchfield CD. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci. 1998;33:813–19. https://doi.org/10.1111/j.1945-5100.1998.tb01688.x
  15. 14. Liu BB, Zhao WY, Chu X, Hozzein WN, Prabhu DM. Haladaptatuspallidirubidus sp. nov., a halophilic archaeon isolated from saline soil samples in Yunnan and Xinjiang, China. Antonie van Leeuwenhoek. 2014;106:901–10.
  16. https://doi.org/10.1007/s10482-014-0259-4
  17. 15. Liu R, Cui CB, Duan L, Gu QQ, Zhu WM. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge‐derived actinomycete Sac‐charopolyspora sp. nov. Arch Pharm Res. 2005;28:1341–44. https://doi.org/10.1007/BF02977899
  18. 16. Lizama C, Monteoliva-Sanchez M, Prado B, Cormenzana RA, Weckesser J, Campos V. Taxonomic study of extreme halophilic archaea isolated from the Salar de Atacama, Chile. Syst Appl Microbiol. 2001;24:464–74. https://doi.org/
  19. 10.1078/0723-2020-00053
  20. 17. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A. Halophiles 2010: Life in saline environments. Appli and Environ Microbiol. 2010;6971–81. https://doi.org/10.1128/AEM.01868-10
  21. 18. Mangamuri U, Muvva V, Poda S, Naragani K, Munaganti RK, Chitturi B, Yenamandra V. Bioactive metabolites produced by Streptomyces chenanensis VUK-A from Coringa mangrove sediments: isolation, structure elucidation and bioactivity. Biotech. 2016;6:1‒8. https://doi.org/10.1007/s13205-016-0398-6
  22. 19. Minegishi H, Shimane Y, Echigo A, Ohta Y, Hatada Y. Thermophilic and halophilic b-agarase from a halophilic archaeon Halococcus sp. 197A. Extremophiles. 2013;17:931–39. https://doi.org/10.1007/s00792-013-0575-z
  23. 20. Nguyen DM, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MW. Temperature- dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. MetabEng. 2015;34:71–79. https://doi.org/10.1016/j.ymben.2015.12.006
  24. 21. Oztetik E, Cakir A. New food for an old mouth: new enzyme for an ancient archaea. Enzyme Microb Technol. 2014;55:58–64. https://doi.org/10.1016/j.enzmictec.2013.12.004
  25. 22. Poli A, Di Donato P, Abbamondi GR, Nicolaus B. Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea. 2011;1‒13. https://doi.org/10.1155/2011/693
  26. 253
  27. 23. Prathiba R, Shruthi M, Miranda LR. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Waste Manag. 2018;76:528‒36. https://doi.org/
  28. 10.1016/j.wasman.2018.03.029
  29. 24. Guan Z, Naparstek S, Calo D, Eichler J. Protein glycosylation as an adaptive response in archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ Microbiol. 2012;14:743–53. https://doi.org/10.1111/j.1462-2920.2011.02625.x
  30. 25. Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis and synthesis of phenazine natural products. Bioorganic and Med Chem. 2017;25:6149–66.
  31. https://doi.org/10.1016/j.bmc.2017.01.002
  32. 26. Haseltine C, Hill T, Montalvo-Rodriguez R, Kemper SK, Shand RF, Blum P. Secreted euryarchaeal microhalocins kill hyperthermophilic crenarchaea. J Bacteriol. 2001;183:287–91. https://doi.org/10.1128/JB.183.1.287-291.2001
  33. 27. Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98:1223–35. https://doi.org/10.1007/s00253-013-5359-y
  34. 28. Indira D, Das B, Balasubramanian P, Jayabalan R. Sea water as a reaction medium for bioethanol production. In: Microb Biotech; 2018. 171–92. https://doi.org/10.1007/978-981-10-7140-9_9
  35. 29. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L. N-linked glycosylation in archaea: a structural, functional and genetic analysis. Microbiol Mol Biol Rev. 2014;78:304–41. https://doi.org/10.1128/MMBR.00052-13
  36. 30. Jung K-W, Lim S, Bahn Y-S. Microbial radiation-resistance mechanisms. J Microbiol. 2017;55:499–507. https://doi.org/10.1007/s12275-017-7242-5
  37. 31. Keller, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE,et al. Genome sequence of Halobacterium species NRC- 1. Proc Natl Acad Sci USA. 2000;97:12176–81. https://doi.org/10.1073/pnas.190337797
  38. 32. Kim J, Shin D, Kim SH, Park W, Shin Y, Kim WK, et al. Borrelidins C–E: New antibacterial macrolides from a saltern-derived halophilic Nocardiopsis sp. Mar Drugs. 2017;15:166. https://doi.org/10.3390/md15060166
  39. 33. Kim S. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015;99(6):2705‒14. https://doi.org/10.1007/s00253-014-6303-5
  40. 34. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Shimoshige H. Halarchaeumsalinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol. 2013;63:1138–42. https://doi.org/10.1099/ijs.0.044693-0
  41. 35. Xiao L, Liu H, Wu N, Liu M, Wei J, Zhang Y, Lin X. Characterization of the high cytochalasin E and rosellichalasin producing Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J Microbiol Biotechnol. 2013;29:11–17. https://doi.org/10.1007/s11274-012-1152-9
  42. 36. Yuan PP, Zhang WJ, Han D, Cui HL. Haloarchaeobiussalinus sp. nov., isolated from an inland salt lake and emended description of the genus Haloarchaeobius. Int J Syst Evol Microbiol. 2015;65:910–14. https://doi.org/10.
  43. 1099/ijs.0.000038
  44. 37. Zheng WM, Huang LL, Huang JQ, Wang XJ, Chen XM. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Commun. 2013;4:2673. https://doi.org/10.1038/ncomms3673
  45. 38. Fraga GB, da Silva AF, Lopez-Seijas J, Sieiro C. Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli. Appl Microbiol Biotechnol. 2014;98:2133–43.
  46. https://doi.org/10.1007/s00253-013-5124-2
  47. 39. Dammak FD, Zarai Z, Najah S, Abdennabi R, Belbahri L, Rateb ME, et al. Antagonistic properties of some halophilic thermoactinomycetes isolated from superficial sediment of a solar saltern and production of cyclic antimicrobial peptides by the novel isolate Paludifilum halophilum. BioMed Res Int. 2017;1–13. https://doi.org/10.1155/2017/
  48. 1205258
  49. 40. Frols S. Archaeal biofilms: widespread and complex. Biochem Society Transactions. 2013;41:393–98. https://doi.org/10.1042/BST20120304
  50. 41. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. Organic solvent tolerance of halophilic alpha-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles. 2005;9:85–89. https://doi.org/10.1007/s00792-004-0423-2
  51. 42. Gammone MA, Riccioni G, Orazio DN. Marine carotenoids against oxidative stress: Effects on human health. Mar Drugs. 2015;13:6226–46. https://doi.org/10.3390/md13106226
  52. 43. Fendrihan S, Dornmayr-Pfaffenhuemer M, Gerbl FW, Holzinger A, Grosbacher M, Briza P, et al. Spherical particles of halophilic archaea correlate with exposure to low water activity–implications for microbial survival in fluid inclusions of ancient halite. Geobiol. 2012;10:424–33. https://doi.org/10.1111/j.1472-4669.2012.00337.x
  53. 44. De la Haba RR, Porro SC, Marquez MC, Ventosa A. Taxonomy of halophiles. In: Horikoshi K, editor. Extremophiles handbook. Springer Japan, Tokyo; 2011. 255–308. https://doi.org/10.1007/978-4-431-53898-1_13
  54. 45. Connor EO, Shand R. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Indus Microbiol and Biotechnol. 2002;28:23–31. https://doi.org/10.1038/sj/jim/7000190
  55. 46. Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine Drugs. 2020;18(1):33. https://doi.org/10.3390/md18010033

Downloads

Download data is not yet available.