Ophiorrhiza, a promising herbaceous source of the anticancer compound camptothecin

Authors

  • G Krishnakumar Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • K P Dintu Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • Sibi C Varghese Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • Deepthi S Nair Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • Geethu Gopinath Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • K B Rameshkumar Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • K Satheeshkumar Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India
  • P N Krishnan Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695 562, Kerala, India

DOI:

https://doi.org/10.14719/pst.2020.7.2.660

Keywords:

medicinal value, traditional uses, biological activities, bioproduction

Abstract

Camptothecin is an important source for the synthesis of some of the major anti-cancer agents such as irinotecan and topotecan. Traditional source of camptothecin are prominently woody plants such as Camptotheca acuminata Decne. and Nothopodytes nimmoniana (Graham) Mabb., and the increasing demand for camptothecin leads to the level of threatening their existence. Ophiorrhiza species composed of herbaceous plants with quick growth characteristics which are reported as alternative source of camptothecin. The present review focus on taxonomical status, traditional uses, biological activities and phytochemical constituents with a special attention in bioproduction of camptothecin from Ophiorrhiza species and its future prospects.

Downloads

Download data is not yet available.

References

1. Ali Karimi, Maedeh Majlesi, Mahmoud Rafieian-Kopaei. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmaco. 2015;l4:27–30

2. Leete E. Biosynthesis of quinine and related alkaloids. Acc Chem Res. 1969;2:59-64

3. Woo DDL, Miao SYP, Pelayo JC, Woolf AS. Taxol inhibits progression of congenital polycystic kidney disease. Nature. 1994;368:750-53

4. El-Sayed M, Verpoorte R. Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev. 2007;6: 277-305

5. Zhao J, Verpoorte R. Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev. 2007;6:435-57

6. Wall ME, Wani MC, Cook CE, Palmer KH. Plant antitumor agents I: the isolation and structure of camptothecin, a novel alkaloidalleukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc.1966;88:3888-90

7. Tafur S, Nelson JD, De Long DC, Voboda GH. Antiviral components of Ophiorrhiza mungos isolation of camptothecin and 10-methoxycamptothecin. Lloydia. 1976;39:261-62

8. Sasidharan N. Biodiversity documentation for Kerala. 6th part. Flowering Plants, KFRI, Thrissur. 2004

9. Nayar TS, Rasiya BA, Mohanan N, Rajkumar G. Flowering plants of Kerala - A handbook, TBGRI, Thiruvananthapuram. 2006

10. Deb DB, Mondal DC. Taxonomic revision of the genus Ophiorrhiza L. (Rubiaceae) in Indian subcontinent. Bull Bot Surv India. 1997;39:1-148

11. Govindachari TR, Viswanathan N. Alkaloids of Mappia foetida. Phytochemistry. 1972;1:3529-31

12. Jose B, Satheeshkumar K. In vitro mass multiplication of Ophiorrhiza mungo Linn. Indian J Exp Biol. 2004;42:639-42

13. Sibi CV, Renjith R, Roja G, Ravichandran P. Satheeshkumar K. A novel and efficient method for the enhanced production of multiple shoots and camptothecin from Ophiorrhiza trichocarpon Blume through subculture passages in media of alternating strength. European J Biotechnol Biosci. 2016;4:12-16

14. Roja G. Micropropagation and production of camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens. Nat Prod Res. 2008;2:1017-23

15. Kitajima M, Fujii N, Yoshino F, Sudo H, Saito K, Aimi N, et al. Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis. Chem Pharm Bull. 2005;53:1355-58

16. Mabberly DJ. Mabberley's Plant book - A portable dictionary of plants, their classifications and uses, ed 3, Cambridge University Press, New York, 2008; pp 603

17. Van Balgooy MMJ. Plant Geography of the Pacific. Blumea Suppl 6. 1971;1-222

18. Darwin PS. The pacific species of Ophiorrhiza L. (Rubiaceae). Lyonia. 1976;1:102-47

19. Sibi CV, Dintu KP, Renjith R, Krishnaraj MV, Roja G, Satheeshkumar K. A new record of Ophiorrhiza trichocarpon Blume (Rubiaceae: Ophiorrhizeae) from Western Ghats, India: Another source plant of camptothecin. J Sci Ind Res. 2012;4:529-32

20. Sibi CV, Renjith R, Dintu KP, Ravichandran P, Satheeshkumar K. A new record of Ophiorrhiza wattii (Rubiaceae?: ophiorrhizeae) for Western Ghats, India – a source of an anticancer drug. Indian J Trop Biodiversity. 2015;246:2006-69

21. Hareesh VS, Sreekumar VB, Prabhukumar KM, Sabu M, Sreejith KA. Lectotypification of Ophiorrhiza heterostyla Dunn and the new record of Ophiorrhiza rugosa Wall. var. angustifolia (Thwaites) Ridsale (Rubiaceae) for India. Webbia. 2015;70:109-12

22. Hareesh VS, Sreekumar VB, Kumar KMP, Nirmesh TK, Sreejith KA. Ophiorrhiza sahyadriensis (Rubiaceae), a new species from southern Western Ghats, Kerala, India, Phytotaxa. 2015b;202: 2014-16

23. Wu L, Hareesh VS, Yu YL. The taxonomic identity of Ophiorrhiza rarior and O. mycetiifolia (Rubiaceae). Phytotaxa. 2017;299:261-66

24. Don, G. A General System of Gardening and Botany: Founded Upon Miller's Gardener's Dictionary, and Arranged According to the Natural System. CJG and F. Rivington. 1834;3

25. Agarwal KP, Dhar MM. Chemical examination of Ophiorrhiza mungos L. J Sci Ind Res – B. 1958;183:114-15

26. Kong YC, Hu SY, Lau FK, Che CT, Yeung HW, Cheung S. Potential anti-fertility plants from Chinese medicine, Am J Chin Med. 1976;4:105-28

27. Kai GY, Dai LM, Mei XY. Zheng JG. In vitro plant regeneration from leaf explants of Ophiorrhiza japonica. Biol plantarum. 2008;52:557-60

28. Kapur SK. Medico-botanic survey of medicinal and aromatic plants of Mawphlang (Shillong). Indian Drugs. 1983;2:1-5

29. Maikuri RK, Gangwar AK. Ethnobiological notes on the Khasi and Garo tribes of Meghalaya, Northeast India. Econ Bot. 1993; 47:345-57

30. Burkill IH. A dictionary of the economic products of the Malay Peninsula, Crown Agents, London. 1935

31. Fujii T, Ohba M, Seto S. Quinolizidines. Xxxiii. A chiral synthesis of ophiorrhizine, a pentacyclic quaternary indole alkaloid from Ophiorrhiza major Ridl. Chem Pharm Bull.1995; 4:49-52

32. Arbain D. Chemical study of some West Sumatran plants, in Abstract of 7th Asian symposium on medicinal plants, spices and other natural products, ASOMPS VII, Manila. 1992

33. Alam MK. Medical ethnobotany of the marma tribe of Bangladesh. Econ Bot. 1992;46:330-35

34. Watt G. A Dictionary of the Economic Products of India. Govt. Printing Press, Culcutta. 1891

35. Manandhar NP. A survey of medicinal plants of Jajarkot district, Nepal. J Ethnopharmacol. 1995;48:1-6

36. Alen Y. Antinematodal activity of some tropical rainforest plants against the pinewood nematode, Bursaphelenchus xylophilus. Z Naturforsch. 2000;55:295-99

37. Anaswara KS, Dileepkumar R, Achuthsankar SN, Oommen VO. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. J Ethnopharmacol 2014;151:543-47

38. Farhana I, Sharmin RC, Tasdique MQ. Mohammad AK, Md. Gias U, Mohammad AR. Antioxidant, total phenolics, free radical scavenging and preliminary cytotoxicity studies of Ophiorrhiza mungos. Bangladesh Pharm J. 2011;14:117-20

39. Mohan VC, Lekshmi GM, Gangaprasad A. In vitro anti-oxidant activity of the methanolic root, stem, and leaf extracts of Ophiorrhiza mungos L. Int J Biolo Pharm Allied Sci. 2012;1:529-36

40. Krishnakumar G, Rameshkumar KB, Priya S, Satheeshkumar K, Krishnan N. Estimation of camptothecin and pharmacological evaluation of Ophiorrhiza prostrata D. Don and Ophiorrhiza mungos L, Asian Pac J Trop Biomed. 2012;S727-31

41. Kumar GK, Fayad AM, Nair AJ. Ophiorrhiza mungos var. angustifolia–Estimation of camptothecin and pharmacological screening. Plant Sci Today. 2018;5(3):113-20

42. Maribel GN, Roger JWT, John AC, Mark EH, Mary JG. Glucoindole alkaloids from Ophiorrhiza acuminata. Planta Med. 1995;6:278-80

43. Arbain D, Putra DP, Sargent MV. Tetrahydroalstonine from Ophiorrhiza discolour. Planta Med. 1991;57:396

44. Masashi O, Hiroyuki K, Hiroyuki I. A chiral synthesis of the Strychnos and Ophiorrhiza alkaloid normalindine. Tetrahedron. 2000;56:7751-61

45. Arbain D, Putra DP, Sargent MV. The Alkaloids of Ophiorrhiza filistipula. Aust J Chem. 1993;46:977-85

46. Aimi N, Murakami H, Tsuyuki T, Nishiyama T, Sakai S, Haginiwa J. Hydrolytic degradation of ?-carboline type monoterpenoid glucoindole alkaloids: a possible mechanism for harman formation in Ophiorrhiza and related Rubiaceous plants. Chem Pharm Bull. 1986;34:3064-66

47. Fujita E, Sumi A. Studies on the constituents of Ophiorrhiza japonica Bl. Yakugaku Zasshi. 1967;87:1153-55

48. Wang W, Lu Y, Li L, Wang J, Qian Z, Zhou G, et al. Distribution of anticancer drug in Ophiorrhiza japonica. J Shanghai Univ Nat Sci. 2009;38:59-62

49. Aimi N, Tsuyuki T, Murakami H, Sakai S, Haginiwa J. Structure of ophiorines A and B; novel type gluco indole alkaloids isolated from Ophiorrhiza spp. Tetrahedron Lett. 1985;26: 5299-302

50. Yasuyo Y, Akiko U, Hiroshi S, Mariko K, Hiromitsu T, Mami Y, et al. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry. 2003;62:461-70

51. Aimi N, Hoshino H, Nishimura M, Sakai S, Haginiwa J. Chaboside: first natural glycocamptothecin found from Ophiorrhiza pumila. Tetrahedron Lett. 1990;3:5169-72

52. Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds, Plant Cell Physiol. 2003;44:395-403

53. Kitajima M, Masumoto S, Takayama H, Aimi N. Isolation and partial synthesis of 3(R)- and 3(S)-deoxypumiloside; structural revision of the key metabolite from the camptothecin producing plant, Ophiorrhiza pumila. Tetrahedron Lett. 1997; 38:4255-58

54. Kitajima M, Yoshida S, Yamagata K, Nakamura M, Takayama H, Saito K, et al. Camptothecin-related alkaloids from hairy roots of Ophiorrhiza pumila, Tetrahedron. 2002;58:9169-78

55. Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J. Structure of ophiorines A and B; novel type glucoindol alkaloids from Ophiorrhiza spp. Tetrahedron Lett. 1989;30: 4991-94

56. Kitajima M, Fischer U, Nakamura M, Masahiro UMO, Takayama H, Unger M, et al. Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry. 1998;48:107-111

57. Wijinsma R, Verpoorte R. Antraquinones in Rubiaceae. Prog Chem Org Nat Prog. 1986;49:79-149

58. Hsiu HC, Chia YL. The Constituents of Ophiorrhiza hayatana Ohwi. Master's Thesis, National Cheng Kung University, Institute of Chemistry, China; 2005

59. Arul AB, Savarimuthu I, Gabriel PM, Khalid SA. Cancer chemopreventive potential of luteolin-7-O glucoside isolated from Ophiorrhiza mungos Linn. Nutr Cancer. 2011;63:130-38

60. Yuan YJ. Ryukyu snake root ingredient research. Master Thesis, National Cheng Kung University, China; 1995

61. Arbain D, Dachriyanus, Firmansyah, Sargent MV, Skelton BW, White AH. Unusual indole alkaloids from Ophiorrhiza blumeana Korth. J Chem Soc [Perkin 1]. 1998;2537-40

62. Hamzah AS, Arbain D, Mahyudin, Sargent MV, Lajis NH. The Alkaloids of Ophiorrhiza communis and O. tomentosa, Pertanika J Sci Technol. 1994;2:33-38

63. Arbain D, Byrne LT, Dachriyanus, Sargent MV. Isomalindine-16- carboxylate, a zwitterionic alkaloid from Ophiorrhiza communis. Aust J Chem. 1997;50:1109-10

64. Arbain D, Deddi PP, Sargent MV, Revi S, Fatma SW. Indol alkaloids from two species of Ophiorrhiza. Aust J Chem. 2000; 53:221-24

65. Arbain D, Byrne LT, Dachriyanus, Evrayoza N, Sargent MV. Bracteatine, a quaternary glucoalkaloids from Ophiorrhiza bracteata. Aust J Chem. 1997;50:1111-12

66. Hutchinson CR. Tetrahedron report number 105: Camptothecin: chemistry, biogenesis and medicinal chemistry. Tetrahedron. 1981;37:1047-65. https://doi.org/10.1016/S0040-4020(01)92034-4

67. Yamazaki Y, Urano A, Sudo H, Kitajima M. Takayama H, Yamazaki M, et al. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry. 2003;62:461-70. https://doi.org/10.1016/s0031-9422(02)00543-5

68. Lorence A, Nessler CL. Camptothecin, over four decades of surprising findings. Phytochemistry. 2004;65:2735-49. https://doi.org/10.1016/j.phytochem.2004.09.001n

69. Dai JR, Cardellina JH, Boyd MR.O ?-Glucopyranosyl camptothecin from Mostuea brunonis: a potential camptothecin prodrug with improved solubility. J Nat Prod. 1999;20:1427-29. https://doi.org/10.1021/np990100m

70. Roja G, Heble MR. The quinoline alkaloids camptothecin and 9-methoxy camptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry. 1994;3:65-66. https://doi.org/10.1016/S0031-9422(00)97013-4

71. Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR. Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Med. 1981;43:404-07. https://doi.org/10.1055/s-2007-971533

72. Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M. Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod. 1979;42:475-77. https://doi.org/10.1021/np50005a006

73. Roja G. Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species. Nat Prod Rep. 2006;20:85-88. https://doi.org/10.1080/15216540500092898

74. Namedo AG, Priya T, Bhosale BB. Micropropagation and production of camptothecin from in vitro plants of Ophiorrhiza mungos. Asian Pac J Trop Biomed. 2012;2:1-5. https://doi.org/10.1016/S2221-1691(12)60292-5

75. Renjith R, Sibi CV, Rajani K, Roja G, Ramaswamy V, Krishnan S, et al. Search for Camptothecin yielding Ophiorrhiza species from southern Western Ghats in India, A HPTLC-densitometry study. Ind Crops Prod. 2013;43:472-47. https://doi.org/10.1080/23312009.2016.1275408

76. Viraporn V, Yamazaki M, Saito K, Jessada D, Kongkanda C, Taksina C, et al. Correlation of camptothecin-producing ability and phylogenetic relationship in the genus Ophiorrhiza. Planta Med. 2011;77:759-64. https://doi.org/10.1055/s-0030-1250568

77. Pornwilai Y, Piyarat C, Suchada S. Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production. Biotechnol Lett. 2011;33:2519-26. https://doi.org/10.1007/s10529-011-0717-2

78. Vineesh VR, Fijesh PV, Jelly Louis C, Jaimsha RVK. Padikkala J. In vitro production of camptothecin (an anticancer drug) from mutant albino plants of Ophiorrhiza rugosa var. decumbens. Curr Sci. 2007;92:1216-18

79. Suchita K, Roja G, Susan E. Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Nat Prod Res. 2011;2: 1762-65. https://doi.org/10.1080/14786419.2011.559469

80. Jaimsha RVK, Fijesh PV, Jose P. Micropropagation of Ophiorrhiza eriantha Wight through leaf explant cultures. Plant Tissue Cult Biotechnol. 2010;20:13-20

81. Gharpure G, Chavan B, Lele U, Hastak A, Bhave A, Malpure N, et al. Camptothecin accumulation in Ophiorrhiza rugosa var. prostrata from Northern Western Ghats. Curr Sci. 2010;98:302-04

82. Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induce protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260:14873-78

83. Nicholas AW, Wani MC, Manikumar G, Wall ME, Kohn KW, Pommier Y. Plant antitumor agents 29. Synthesis and biological activity of ring D and ring E modified analogues of camptothecin. J Med Chem. 1990;33:972-78. https://doi.org/10.1021/jm00165a014

84. Kelly DC, Avery RJ, Dimmock NJ. Camptothecin: an inhibitor of influenza virus replication. J Gen Virol. I974;25:427-32.https://doi.org/10.1099/0022-1317-25-3-427

85. Bodley AL, Shapiro TA. Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on Trypanosomes and Leishmania. ?Proc Natl Acad Sci. 1995;9:3726-30. https://doi.org/10.1073/pnas.92.9.3726

86. Priel E, Showalter SD, Blair DG. Inhibition of human immunodeficiency virus (HIV-1) replication by non-cytotoxic doses of camptothecin, a topoisomerase I inhibitor. AIDS Res Hum Retroviruses. 1991;7:65-72.SS. https://doi.org/10.1002/med.21342

87. Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Molecular pharmaceutics. 2010;7(2):307-349. https://doi.org/10.1021/mp900243b

88. Garcia R, Supko JG. Current perspectives on the clinical experience, pharmacology and continued development of the camptothecin. Clinl Cancer Res. 2002;8:641-61

89. Nilesh P, Dawn W. Nano-particulate Drug Delivery Systems for Camptothecins. Cancer Ther. 2012;8:90-104

90. Puri SC, Handa G, Bhat BA, Gupta VK, Amna T, et al. Separation of 9-methoxycamptothecin and camptothecin from Nothapodytes foetida semipreparative HPLC. J Chromatogr Sci. 2005;43:348-50. https://doi.org/10.1093/chromsci/43.7.348

91. Mattina MJI, Berger WAI, Denson CL. Microwave-assisted extraction of taxanes from Taxus biomass. J Agric Food Chem. 1997;45:4691-96. https://doi.org/10.1021/jf970454o

92. Devanand PF, Ramesh KS. Comparison of techniques for the extraction of the anti-cancer drug camptothecin from Nothapodytes foetida. J Chromatogr A. 2005;1063:9-13. https://doi.org/10.1016/j.chroma.2004.11.020

93. Yevgen P, Hanife B, Siddik I. Spectral-luminescent and solvatochromic properties of anticancer drug camptothecin. J Photochem Photobiol B. 2003;158:13-20. https://doi.org/10.1016/S1010-6030(03)00098-4

94. Van-Hengel AJ, Buitelaar RM, Wichers HBJ. Camptotheca acuminata Decne: In vitro culture and the production of camptothecin. In: Bajaj YPS, editor. Biotechnology in agriculture and forestry. Vol. XXVIII, New York: Springer Verlag Berlin Heidelber; 1994. p. 98-112

95. Amitava S, Demian RI, Hemanta RN, Vasudeva B, Graham CR, Pradeep T. Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst. 2011;136:3066-68

96. Umashankaar R, Ramesha BT, Ravikanth G, Gunaga RP, Vasudeva R, Ganeshaiah KN. Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system, Bioactive molecules and medicinal plants. In: Ramawat KG, Merillon JM, editors. Springer-Verlag Berlin and Heidelber; 2008. p. 197-213

97. Martin KP, Zhang CL, Hembrom ME, Slater A, Madassery J. Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an anticancer drug) and rapid propagation. Plant Biotechnol Rep. 2008;2:163-69. https://doi.org/10.1007/s11816-008-0057-4

98. Deepthi S, Satheeshkumar K. Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Appl Microbiol Biotechnol. 2016a;101:545-58. https://doi.org/10.1007/s11240-015-0908-y

99. Deepthi S, Satheeshkumar K. Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult. 2016b; 124: 483-93

100. Deepthi S, Satheeshkumar K. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J. 2017;117:98-209. https://doi.org/10.1016/j.bej.2016.10.016

101. Beegum AS, Martin KP, Chun LZ, Nishitha IK, Ligimol, Slater A, et al. Organogenesis from leaf and internode explants of Ophiorrhiza prostrata, an anticancer drug (camptothecin) producing plant. Electron J Biotechnol. 2007;10:114-23. https://doi.org/10.2225/vol10-issue1-fulltext-7

102. Martin K, Beegum AS, Zhang CL, Slater A, Madhusoodanan P. In vitro propagation of Ophiorrhiza prostrata through somatic embryogenesis. Biological Plantarum. 2007;51:769-72. https://doi.org/10.1007/s10535-007-0157-y

103. Asano T, Sudo H, Yamazaki M, Saito K. Camptothecin production by in vitro cultures and plant regeneration in Ophiorrhiza species. Methods in Mol Biol. 2009;547:337-45. https://doi.org/10.1007/978-1-60327-287-2_27

104. Saito K, Sudo H, Yamasaki M, Nakamura KM, Kitajima M, Takayama H, et al. Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Reports. 2001;20:267-27. https://doi.org/10.1007/s002990100320

105. Xiaoning N, Shiqiu W, Wei W, Xiaoyun W, Hui X, Guoyin K. Enhancement of camptothecin production in Camptotheca acuminata hairy roots by overexpressing ORCA3 gene. J Appl Pharm Sci. 2011;01:85-88

106. Vander FL, Memelink J. ORCA3, a jasmonate responsive transcriptional regulator of plant primary and secondary metabolism. Science. 2000;289:295-97. https://doi.org/10.1126/science.289.5477.295

107. Watase I, Sudo H, Yamazaki M, Saito K. Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnol. 2004;21:337-42

108. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, et al. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Micro. 2008;44:203-09

109. Yan XF, Wang Y, Yu T, Zhang YH, Dai SJ. Variation in camptothecin content in Camptotheca acuminata leaves. Int J Plant Sci. 2003;44: 99-105. https://doi.org/10.1093/treephys/18.4.265

110. Pai SR, Pawar NV, Nimbalkar MS, Kshirsagar PR, Kolar FK, DixitGB. Seasonal variation in content of camptothecin from the bark of Nothapodytes nimmoniana (Grah.) Mabb., using HPLC analysis. Pharmacognosy Research. 2013;5:219-23. https://doi.org/10.4103/0974-8490.112434

111. Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K. Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnol Letters. 2002;24:359-63. https://doi.org/10.1023/A:1014568904957

112. Jeeja JK, Gangaprasad A, Satheeshkumar K. In vitro mass multiplication and estimation of camptothecin (CPT) in Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Ind Crops and Products. 2018;119:64-72. https://doi.org/10.1016/j.indcrop.2018.03.061

113. Mathew PM, Philip O. Pollen buds in Ophiorrhiza mungos L. Science and Culture. 1979;41:610-11

114. Koh N, Tetsuo D, Osamu K, Masatsugu Y. Breakdown of distyly in a tetraploid variety of Ophiorrhiza japonica (Rubiaceae) and its phylogenetic analysis. J Plant Res. 2007;120:501-9. https://doi.org/10.1007/s10265-007-0089-9

115. Sankar Thomas YD, Saare Surminski K, Lieberei R. Plant regeneration via somatic embryogenesis of Camptotheca acuminata in temporary immersion system (TIS). Plant Cell Tissue and Organ Culture. 2008;95:163-173. https://doi.org/10.1007/s11240-008-9428-3

116. Krishnakumar G, Satheeshkumar K, Krishnan PN. Tissue culture studies and estimation of camptothecin from Ophiorrhiza prostrata D. Don. Ind J Plant Physiol. 2018;3:582–592. https://doi.org/10.1007/s40502-018-0391-7

117. Jeeja JK, Gangaprasad A, Satheeshkumar K. Exogenous methyl jasmonate acts as a signal transducer in the enhancement of camptothecin (CPT) production from in vitro cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Ind Crops and Products. 2018;119:93-101. https://doi.org/10.1016/j.indcrop.2018.04.007

118. UNESCO. Western Ghats [Internet]. UNESCO World Heritage List; 2012 [cited 2019 Nov 1]. Available from: https://whc.unesco.org/en/list/1342/

Published

02-05-2020

How to Cite

1.
Krishnakumar G, Dintu KP, Varghese SC, Nair DS, Gopinath G, Rameshkumar KB, Satheeshkumar K, Krishnan PN. Ophiorrhiza, a promising herbaceous source of the anticancer compound camptothecin. Plant Sci. Today [Internet]. 2020 May 2 [cited 2024 Dec. 22];7(2):240-5. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/660

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.