Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Genomic changes during crop domestication: structural and functional perspectives:

DOI
https://doi.org/10.14719/pst.6613
Submitted
9 December 2024
Published
04-03-2025
Versions

Abstract

Domestication of crop species occurred through the processes of natural selection followed by human intervention which further diversified the crop species and contributed to the accelerated crop cultivation from the ancient civilizations across the world. Based on the soil and climatic factors, crops were domesticated primarily for food purposes in different regions of the world which now recognized as the centres of origin. The genetic diversity patterns of genomes of crop plants have provided a detailed understanding of domestication processes. Elucidation of structural and functional perspectives of genomic changes during crop domestication covering strategies, current status and future perspectives are discussed in this article. Domestication of crop phenotypes is influenced by both pre-existing variations in the progenitor species as well as novel mutations. Genes responsible for the domestication syndrome in different crops have been dissected through several QTL and GWAS studies. The intergenerational selection of plant traits promotes improved acclimatization and adaptation to agricultural management strategies. Only a small number of genes are involved in crop domestication, despite the lengthy process, some of these genes are conserved across species. De novo wild species domestication as well as targeted re-domestication are both possible. Modern genetic tools can be effectively utilized for the modifications of targeted genes. In the era of global climatic change patterns, the potential of super domesticating wild crop species will play a major role in adaptation processes, which in turn would safeguard food security effectively through sustainable approaches.

References

  1. Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature. 2009;457(7231):843?48. https://doi.org/10.1038/nature07895
  2. Meyer RS, Purugganan MD. Evolution of crop species: Genetics of domestication and diversification. Nat Rev Genet. 2013;14(12):840?52. https://doi.org/10.1038/nrg3605
  3. Harlan JR, de Wet JM. On the quality of evidence for origin and dispersal of cultivated plants. Curr Anthro. 1973;14(1/2):51?62. https://doi.org/10.1086/201406
  4. Miller AJ, Gross BL. From forest to field: Perennial fruit crop domestication. American J Bot. 2011;98(9):1389?414. https://doi.org/10.3732/ajb.1000522
  5. Meyer RS, DuVal AE, Jensen HR. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytologist. 2012;196(1):29?48. https://doi.org/10.1111/j.1469-8137.2012.04253.x
  6. Darwin C. The variation of plants and animals under domestication. London: J Murray. 1868.
  7. Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci. 2007;104(Suppl 1):8641?48.
  8. https://doi.org/10.1073/pnas.0700643104
  9. Mardis ER. Next-generation sequencing platforms. Ann Rev Analyt Chem. 2013;6(1):287?303. https://doi.org/10.1146/annurevanchem-062012-092628
  10. Visendi P, Batley J, Edwards D. Next-generation sequencing and germplasm resources. In: Tuberosa R, Graner A, Frison E, editors. Genomics of plant genetic resources: Vol. 1 Managing, sequencing and mining genetic resources. Springer; 2014. pp. 369?90. https://doi.org/10.1007/978-94-007-7572-5_15
  11. Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. Curr Opinion Plant Biol. 2014;18:51?59. https://doi.org/10.1016/j.pbi.2014.02.001
  12. Yu H, Li J. Breeding future crops to feed the world through de novo domestication. Nat Comm 2022;13(1):1171. https://doi.org/10.1038/s41467-022-28732-8
  13. Vavilov NI. Studies on the origin of cultivated plants. Institut Botanique Applique et d'Amelioration des Plantes. 1926.
  14. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci. 2002;99(9):6080?84. https://doi.org/10.1073/pnas.052125199
  15. Smith BD. The domestication of Helianthus annuus L. (sunflower). Veg History Archaeo Botany. 2014;23(1):57?74. https://doi.org/10.1007/s00334-013-0393-3
  16. Heun M, Haldorsen S, Vollan K. Reassessing domestication events in the Near East: Einkorn and Triticum urartu. Genome. 2008;51(6):444?51. https://doi.org/10.1139/G08-030
  17. Carpentier MC, Manfroi E, Wei FJ, Wu HP, Lasserre E, Llauro C, et al. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat Comm. 2019;10(1):24. https://doi.org/10.1038/s41467-018-07974-5
  18. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Sci. 2006;312(5778):1392?96. https://doi.org/10.1126/science.1126410
  19. Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 2017;18(1):1?17. https://doi.org/10.1186/s13059-017-1190-6
  20. Harlan JR. Plant domestication: Diffuse origins and diffusions. In: Developments in Agricultural and Managed Forest Ecology. Elsevier. 1986;16:21?34. https://doi.org/10.1016/B978-0-444-42703-8.50007-5
  21. Olsen KM, Wendel JF. A bountiful harvest: Genomic insights into crop domestication phenotypes. Ann Rev Plant Biol. 2013; 64(1):47?70. https://doi.org/10.1146/annurev-arplant-050312-120048
  22. Lavanya YS, Rangasamy A, Murugesan D, Vijila K. Survey of rice genotypes Southern India for seed zinc concentration to explore its seed endophytic microbial activity. Ind J Agrl Res. 2024;58(2):202–08. https://doi:18805/IJARe.A-6193
  23. Lavanya YS, Murugesan D, Chandrasekar CN, Vijila K. Changes in organic acid composition, proton efflux and root length in rice genotypes differing in grain zinc accumulation efficiency. Agrl Sci Digest. 2024:44(6):1090–97. https://doi:10.18805.ag.D-5948
  24. Wang Y, Shen D, Bo S, Chen H, Zheng J, Zhu QH, et al. Sequence variation and selection of small RNAs in domesticated rice. BMC Evol Biol. 2010;10(1):1?10. https://doi.org/10.1186/1471-2148-10-119
  25. Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol. 2006;170(1):185?94. https://doi.org/10.1111/j.1469-8137.2005.01647.x
  26. Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309?21. https://doi.org/10.1016/j.cell.2006.12.006
  27. Studer AJ, Wang H, Doebley JF. Selection during maize domestication targeted a gene network controlling plant and inflorescence architecture. Genet. 2017;207(2):755?65. https://doi.org/10.1534/genetics.117.300071
  28. Liu J, Fernie AR, Yan J. The past, present and future of maize improvement: Domestication, genomics and functional genomic routes toward crop enhancement. Plant Comm. 20020;1(1):1?16. https://doi.org/10.1016/j.xplc.2019.100010
  29. Doebley J, Stec A. Inheritance of the morphological differences between maize and teosinte: Comparison of results for two F2 populations. Genet. 1993;134(1):559?70. https://doi.org/10.1093/genetics/134.2.559
  30. Allaby RG, Stevens CJ, Kistler L, Fuller DQ. Emerging evidence of plant domestication as a landscape-level process. Trend Ecol Evol. 2022;37(3):268?79. https://doi.org/10.1016/j.tree.2021.11.002
  31. Wright SL, Gaut BS. Molecular population genetics of plant domestication. In: Shaw CW, (Ed.). Adv in Bot Res. Elsevier. 2005:9?40. https://doi.org/10.1016/S0065-2296(05)47002-9
  32. Jannink JL, Holland JB. Overview of breeding programs and techniques. In: Kriz AL, Maughan MDM, editors. Handbook of maize: Its biology. Springer; 2010. pp. 321?36 https://doi.org/10.1007/978-0-387-78659-9_16
  33. Zhang D, Lu C. Breeding technologies for crop improvement: Past, present and future. Chinese J Agrl Biotech. 2016;3(1):1?15. https://doi.org/10.1016/j.cjab.2016.05.003
  34. Mackay TFC. The genetic architecture of quantitative traits. Ann Rev Gen. 2001;35(1):303?39. https://doi.org/10.1146/annurev.genet.35.102401.090633
  35. Koinange EMK, Singh SP, Gepts P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996;36(1):1037?45. https://doi.org/10.2135/cropsci1996.0011183X003600040037x
  36. Gepts P. Crop domestication as a long-term selection experiment. Plant Breed Rev. 2004;24(1):1?44. https://doi.org/10.1002/9780470650288.ch1
  37. Tanksley SD, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato a re-examination. Theo Appl Genet. 1988;75(5):811?23. https://doi.org/10.1007/BF00265610
  38. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Gen. 2011;43(11):1160?63. https://doi.org/10.1038/ng.942
  39. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Stein N. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527?39. https://doi.org/10.1016/j.cell.2015.07.002
  40. Zhang LB, Zhu Q, Wu ZQ, Ross-Ibarra J, Gaut BS, Ge S, Sang T. Selection on grain shattering genes and rates of rice domestication. New Phytol. 2009;184(1):304?14. https://doi.org/10.1111/j.1469-8137.2009.02984.x
  41. Doust AL, Lukens L, Olsen KM, Mauro-Herrera M, Meyer A, Rogers K. Beyond the single gene: How epistasis and gene-byenvironment effects influence crop domestication. Proc Nat Acad Sci. 2014;111(17):6178?83. https://doi.org/10.1073/pnas.1308940110
  42. Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Li J. Parallel domestication of the Shattering1 genes in cereals. Nat Gen. 2012;44(7):720?24. https://doi.org/10.1038/ng.2281
  43. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Huang Z. Genomic analyses provide insights into the history of tomato breeding. Nat Gen. 2014;46(11):1220?36. https://doi.org/10.1038/ng.3117
  44. Thomson MJ, Tai TH, McClung AM, Lai X-H, Hing ME, Lobos KB, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theo Appl Genet. 2003;107(3):479?93. https://doi.org/10.1007/s00122-003-1270-8
  45. Xu J, Liu Y, Cao M, Wang J, Lan H, Xu Y, et al. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta-analysis. J Integ Plant Biol. 2013;54(5):358?73. https://doi.org/10.1111/j.1744-7909.2012.01128.x
  46. Mauro-Herrera M, Wang X, Barbier H, Brutnell TP, Devos KM, Doust AN. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3. 2013;3:283?95. https://doi.org/10.1534/g3.112.005207
  47. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 201749:579?87. https://doi.org/10.1038/ng.3807
  48. Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet. 2019;51:1616–23. https://doi.org/10.1038/s41588-019-0518-4
  49. Guerra-García A, Piñero D. Current approaches and methods in plant domestication studies. Bot Sci. 2017;95:345?58. https://doi.org/10.17129/botsci.1209
  50. Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, et al. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics. 2013;14:1?12. https://doi.org/10.1186/1471-2164-14-579
  51. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490:497?501. https://doi.org/10.1038/nature11532
  52. Hufford MB, Xu X, van HJ, Pyhäjärvi T, Chia JM, Cartwright RA, et al. Comparative population genomics of maize domestication and improvement. Nat Genet. 2012;44:808?11. https://doi.org/10.1038/ng.2309
  53. Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, et al. Pan-genome of wild and cultivated soybeans. Cell. 2020;182:162?76. https://doi.org/10.1016/j.cell.2020.05.023
  54. Qin P, Lu H, Du H, Wang H, Chen W, Chen Z, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell. 2020;184:3542?58. https://doi.org/10.1016/j.cell.2021.04.046
  55. Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D. Eight highquality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants. 2020;6:34?45. https://doi.org/10.1038/s41477-019-0577-7
  56. Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, Ricci WA. De novo assembly, annotation and comparative analysis of 26 diverse maize genomes. Sci. 2021;373:655?62. https://doi.org/10.1126/science.abg5289
  57. Yang YKJ, Han X, Wuddineh WA, Song GQ, Zhong GY. Removal of a 10-kb Gret1 transposon from VvMybA1 of Vitis vinifera cv. Chardonnay. Hort Res. 2022;9:201. https://doi.org/10.1093/hr/uhac
  58. Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant. 2020;13 (12):1733?51. https://doi.org/10.1016/j.molp.2020.09.001
  59. Chen Q, Li W, Tan L, Tian F. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol Plant. 2021;14(1):9?26. https://doi.org/10.1016/j.molp.2020.12.006

Downloads

Download data is not yet available.