Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Biocontrol activity of yeast and AM fungi against Fusarium oxysporum f. sp. Lycopersici

DOI
https://doi.org/10.14719/pst.6618
Submitted
9 December 2024
Published
09-09-2025 — Updated on 29-09-2025
Versions

Abstract

Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, posed a significant threat to tomato cultivation. This study investigated the biocontrol potential of yeast isolates and Arbuscular Mycorrhizal Fungi (AMF) against this pathogen. Soil and phyllosphere samples were collected from tomato fields in Tamil Nadu, India, leading to the isolation of 120 yeast strains using serial dilution and leaf imprinting techniques. Morphological characterization grouped the isolates with 35 unique colonies were selected for further analysis. Molecular characterization identified three key yeast isolates: Rhodosporidium toruloides (Y2), Moesziomyces antarcticus (Y14) and Pichia kudriavzevii (Y16). Under pot culture conditions, the combined application of AMF and yeast isolates significantly reduced Fusarium wilt incidence. Treatment T5 (AMF liquid-based inoculum + soil yeast Y14) exhibited the highest root colonization (86.66 %), maximum spore load (10397 spores) and minimal disease incidence (11 %), with an 89 % disease reduction compared to the control. This treatment also enhanced tomato plant growth metrics, including height (121.00 cm), root length (61.10 cm) and antioxidant enzyme activity (peroxidase: 0.392 min/g, polyphenol oxidase: 0.791 min/g). Yield parameters were also improved, with maximum fruit weight (19.45 g) and fruit count (6.24) observed in T5-treated plants.

References

  1. 1. Chitwood-Brown J, Vallad GE, Lee TG, Hutton SF. Breeding for resistance to Fusarium wilt of tomato: A review. Genes. 2021;12(11):1673. https://doi.org/10.3390/genes12111673
  2. 2. Kumar A, Verma S, Sharma S. Rhizophagus irregularis enhances growth and defense responses in tomato against Fusarium wilt under greenhouse conditions. Mycorrhiza. 2022;32(2):183–93. https://doi.org/10.1007/s00572-021-01058-5
  3. 3. Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol. 2019;35(10):154. https://doi.org/10.1007/s11274-019-2729-1
  4. 4. Weng W, Yan J, Zhou M, Yao X, Gao A, Ma C, et al. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms. 2022;10(7):1266. https://doi.org/10.3390/microorganisms10071266
  5. 5. Nassar AH, El-Tarabily KA, Sivasithamparam K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils. 2005;42:97–108. https://doi.org/10.1007/s00374-005-0008-5
  6. 6. Kurtzman CP, Fell JW. Yeast systematics and phylogeny-implications of molecular identification methods for studies in ecology. In: Biodiversity and ecophysiology of yeasts. Springer; 2006. p. 11–30. https://doi.org/10.1007/3-540-30985-3_2
  7. 7. Gerhardt P. Manual of methods for general bacteriology. Am Soc Microbiol. 1981.
  8. 8. Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55(1):158–IN118. https://doi.org/10.1016/S0007-1536(70)80110-3
  9. 9. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving & decanting. 1963.
  10. 10. Sairam RK, Rao KV, Srivastava GC. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002;163(5):1037–46. https://doi.org/10.1016/S0168-9452(02)00278-9
  11. 11. Hammerschmidt R, Nuckles EM, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol. 1982;20(1):73–82.
  12. 12. Mayer AM. Catechol oxidase: enzymic liberation from sugar beet chloroplasts. Phytochem. 1966;5(6):1297–301.
  13. 13. Zieslin N, Ben-Zaken RJ. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem. 1993;31(3):333–39.
  14. 14. Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B. Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci. 2015;3:21. https://doi.org/10.3389/fenvs.2015.00021
  15. 15. Slavikova E, Vadkertiova R. The diversity of yeasts in the agricultural soil. J Basic Microbiol. 2003;43(5):430–36. https://doi.org/10.1002/jobm.200390061
  16. 16. Stolz I, Herrfurth C, Wensing A. Moesziomyces bullatus: A yeast-like biocontrol agent inducing systemic resistance and inhibiting fungal pathogens. Front Microbiol. 2021;12:665503. https://doi.org/10.3389/fmicb.2021.665503
  17. 17. Nasanit R, Tantirungkij M, Limtong S. The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method. Fungal Biol. 2015;119(12):1145–57. https://doi.org/10.1016/j.funbio.2015.08.011
  18. 18. Nyanga LK, Nout MJ, Gadaga TH, Theelen B, Boekhout T, Zwietering MH. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe. Int J Food Microbiol. 2007;120(1-2):159–66. https://doi.org/10.1016/j.ijfoodmicro.2007.06.021
  19. 19. Okerentugba PO, Ataikiru TL, Ichor T. Isolation and characterization of hydrocarbon utilizing yeast (HUY) isolates from palm wine. Am J Mol Biol. 2016;6(2):63–70. https://doi.org/10.4236/ajmb.2016.62007
  20. 20. Jeyashri M, Gomathy M, Sabarinathan KG, Subhashini R, Suresh S. Screening of phyllosphere yeast of rice for the production of enzymes and solubilisation of minerals. Int J Curr Microbiol App Sci. 2019;8(8):465–72. https://doi.org/10.20546/ijcmas.2019.808.056
  21. 21. Muthukrishanan G, Munisamy J, Gopalasubramaniam SK, Kizaharael SS, Dharmaraj R, Nath DJ, et al. Impact of foliar application of phyllosphere yeast strains combined with soil fertilizer application on rice growth and yield. Envl Microb. 2024;19:102.
  22. 22. Terryana RT, Ilmiyah N, Setyawati I, Haryati T, Mulya K, Riyanti EI, et al. Morphological, physiological and molecular identification and characterization of yeast isolated from Indonesian fruits and woods. AIP Conf Proc. 2021;2331:040007.
  23. 23. Kurtzman C, Fell JW, Boekhout T. The yeasts: A taxonomic study. Elsevier; 2011.
  24. 24. Ebabhi AM, Adekunle AA, Okunowo WO, Osuntoki AA. Isolation and characterization of yeast strains from local food crops. J Yeast Fungal Res. 2013;4(4):38–43.
  25. 25. Yadav A, Suri VK, Kumar A, Choudhary AK. Effect of AM fungi and phosphorus fertilization on P-use efficiency, nutrient acquisition and root morphology in pea (Pisum sativum L.) in an acid Alfisol. J Plant Nutr. 2018;41(6):689–701. https://doi.org/10.1080/01904167.2017.1416115
  26. 26. Al-Askar A, Rashad Y. Arbuscular mycorrhizal fungi: A biocontrol agent against common. Plant Pathol J. 2010;9(1):31–38.
  27. 27. Tanwar A, Aggarwal A. Impact of arbuscular mycorrhizal fungi and other bioinoculants on growth promotion in Linum usitatissimum L. J Indian Bot Soc. 2011;90(3–4):216–23.
  28. 28. Spagnoletti FN, Cornero M, Chiocchio V, Lavado RS, Roberts IN. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur J Plant Pathol. 2020;156(3):839–49. https://doi.org/10.1007/s10658-020-01905-w
  29. 29. Dehariya K, Shukla A, Sheikh IA, Vyas D. Trichoderma and arbuscular mycorrhizal fungi-based biocontrol of Fusarium udum Butler and their growth promotion effects on pigeon pea. J Agric Sci Technol. 2015;17(2):505–17.
  30. 30. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, et al. Trichoderma: The genomics of opportunistic success. Nat Rev Microbiol. 2011;9(10):749–59. https://doi.org/10.1038/nrmicro2637
  31. 31. Hammerschmidt R, Nuckles EM, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol. 1982;20(1):73–82. https://doi.org/10.1016/0048-4059(82)90025-X
  32. 32. Deborah SD, Palaniswami A, Vidhyasekaran P, Velazhahan R. Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen. J Plant Dis Prot. 2001;4(2):204–16.
  33. 33. Doley K, Dudhane M, Borde M. Effects of arbuscular mycorrhizal fungi against Sclerotium rolfsii in groundnut (JL-24). Indian J Fundam Appl Life Sci. 2015;5(1):293–302.
  34. 34. Doley K, Jite PK. Disease management and biochemical changes in groundnut inoculated with Glomus fasciculatum and pathogenic Macrophomina phaseolina (Tassi) Goid. Plant Sci Feed. 2013;3(2):21–26.
  35. 35. Yuvarani R, Mohan KR, Balabaskar P, Kumar KS. Induction of defense-related enzyme in onion by using combined application of fungal and bacterial biocontrol agents with AM fungi against Fusarium oxysporum f. sp. cepae. Plant Arch. 2020;20(1):21–24.
  36. 36. Chen H, Lin W, Liu L. Deciphering AMF-plant-microbiome interactions in vegetable systems through integrated omics approaches. Sci Total Environ. 2023;857:159654. https://doi.org/10.1016/j.scitotenv.2022.159654

Downloads

Download data is not yet available.