Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Efficacy of Nano DAP as a supplement to conventional phosphorus and its impact on roots, yield and economics

DOI
https://doi.org/10.14719/pst.6677
Submitted
12 December 2024
Published
25-09-2025

Abstract

A field study was conducted in 2022 at the College of Agriculture, Navile, Shivamogga, to assess the effects of conventional DAP and nano DAP seed priming and foliar applications on maize growth, root traits and yield. The experiment followed a Randomized Complete Block Design (RCBD) with 11 treatments, including conventional DAP and nano DAP applications, replicated thrice. The combined application of 75 % of the recommended dose of phosphorus (RDP) with nano DAP seed priming and two foliar sprays resulted in a 5.15 % yield increase over the standard Package of Practice (PoP). However, nano DAP applied solely through seed priming and foliar sprays improved yield by 42.26 % over the absolute control but reduced grain yield by 27.08 % compared to PoP. Despite lower phosphorus usage, the combined nano DAP approach significantly enhanced maize growth, root development, yield attributes and nutrient efficiency over conventional phosphorus treatments. This strategy improved crop performance and promoted sustainable phosphorus management by reducing application rates by 25 %, highlighting nano DAP as a promising alternative to traditional fertilization.

References

  1. 1. Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A review. Front Plant Sci. 2021; 12:657629. https://doi.org/10.3389/fpls.2021.657629
  2. 2. Torres-Rodríguez J, Salazar-Vidal M, Montes R, Massange-Sánchez JA, Gillmor C, Sawers R. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays L.). BMC Plant Biol. 2021;5:259. https://doi.org/10.1186/s12870-021-02997-5
  3. 3. Zhu X, Yan L, Zhang H. Morphological and physiological responses of winter wheat seedlings to nitrogen and phosphorus deficiency. J Plant Nutr. 2013; 36(8):1234–46. https://doi.org/10.1080/01904167.2013.780612
  4. 4. Yang W, Yoon J, Choi H, Fan Y, Chen R, A G. Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol. 2015; 15(1):31. https://doi.org/10.1186/s12870-015-0425-5
  5. 5. Ao X, Guo XH, Zhu Q, Zhang HJ, Wang HY, Ma ZH, et al. Effect of phosphorus fertilization on P uptake and dry matter accumulation in soybean with different P efficiencies. J Integr Agric. 2014; 13:326–34. https://doi.org/10.1016/S2095-3119(13)60390-1
  6. 6. Roberts TL, Johnston AE. Phosphorus use efficiency and management in agriculture. Res Conserv Recycl. 2015; 105:275–81. https://doi.org/10.1016/j.resconrec.2015.09.013
  7. 7. Wen Z, Li H, Shen J, Rengel Z. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant Soil. 2017; 416:377–89. https://doi.org/10.1007/s11104-017-3214-0
  8. 8. Dhillon J, Torres G, Driver E, Figueiredo B, Raun WR. World phosphorus use efficiency in cereal crops. Agron J. 2017;109:1670–77. https://doi.org/10.2134/agronj2016.08.0483
  9. 9. Pereira NCM, Galindo FS, Gazola RPD, Dupas E, Rosa PAL, Mortinho ES, et al. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth-promoting bacteria. Front Environ Sci. 2020; https://doi.org/10.3389/fenvs.2020.00040
  10. 10. Pettigrew WT. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. J Plant Physiol. 2008;133:670–81.10.1111/j.1399-3054.2008.01073.x
  11. 11. Van De Wiel CC, Linden Van Der CG, Scholten OE. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica. 2016; 207:1–22. https://doi.org/10.1007/s10681-015-1572-3
  12. 12. Mandal D. Nanofertilizer and its application in horticulture. J Appl Hortic. 2021; https://doi.org/10.37855/jah. 2021.v23i01.14
  13. 13. Rameshaiah GN, Pallavi J, Shabnam S. Nano fertilizers and nanosensors—An attempt for developing smart agriculture. Int J Eng Res Gen Sci. 2015;3:314–20.
  14. 14. Manjunatha SB, Biradar DP, Aladakatti YR. Nanotechnology and its applications in agriculture: A review. J Farm Sci. 2016; 29:1–11.
  15. 15. Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol. 2010;5(2):91–99. https://doi.org/10.1038/nnano.2010.2
  16. 16. Neumann G, Martinoia E. Cluster roots—An underground adaptation for survival in extreme environments. Trends Plant Sci. 2002;7:162–67. https://doi.org/10.1016/s1360-1385(02)02241-0
  17. 17. Iyarin TM, Aravinda Kumar BN. Foliar application of nano fertilizers in agricultural crops – A review. J Farm Sci. 2019; 32:239–49.
  18. 18. Aniket G, Anand N, Siddaram, Bhat SN, Bellakki MA. Effect of Nano DAP on Growth and Yield of Pigeonpea (Cajanus cajan L.) under Rainfed Conditions. J Farm Sci. 2024;34(2):210–18. https://doi.org/10.9734/jeai/2024/v46i32332
  19. 19. Tyagi S. Effect of Nano DAP and Phosphate Solubilizing Bacteria on Growth, Yield, Nutrient Uptake and Economics of Chickpea (Cicer arietinum L.). I J Res Agron. 2024;8(7):126–50.
  20. 20. Sahu I, Sharma G, Keshry G. Effect of Nano DAP Fertilizer on Growth and Yield of Rice (Oryza sativa L.). Intl J Res Agron. 2024;7(9):28–35. https://doi.org/10.33545/2618060X.2024.v7.i9Sn.1658
  21. 21. Singh M. and Kaur G. Effect of Nano-DAP on Yield, Nutrient Uptake and Nutrient Use Efficiency in Wheat (Triticum aestivum L.). The Pharma Innovation J. 2022;11(9):136–42.
  22. 22. Amar K, Patil, Pandit SR, Patil, Basavaraj K. Studies on Nano DAP on Growth, Yield and Quality of Chickpeas under Rainfed Conditions of Northeastern Dry Zone of Karnataka. Intl J Res Agron. 2024;7(9):98–105. https://doi.org/10.9734/jeai/2024/v46i32332
  23. 23. Ijaz M, Bakht A, Ullah F. Nutrient seed priming with phosphorus improves seed germination, seedling growth and drought tolerance in mung bean. J Plant Physiol. 2019; https://doi.org/10.1016/j.jplph.2019.153040
  24. 24. Tjoelker MG, McDonald CA. A simple method for measuring plant root volume using water displacement. Plant Soil. 1998; https://doi.org/10.1007/BF00141356
  25. 25. Poudel A, Singh SK, Ballesta RJ, Jatav SV, Abhik P, Astha P. Effect of nano-phosphorus formulation on growth, yield and nutritional quality of wheat under semi-arid climate. Agronomy. 2023; https://doi.org/10.3390/agronomy13030768
  26. 26. Gomaa MA, Radwan FI, Kandil EE, Al-Challabi DH. Comparison of some new maize hybrids' response to mineral fertilization and some nano fertilizers. Alex Sci Exch J. 2017; 38:506–14. https://doi.org/10.21608/asejaiqjsae.2017.3908
  27. 27. Lemraski MG, Normohamadi G, Madani H, Abad HHS, Mobasser HR. Two rice cultivars respond to nitrogen and nano-fertilizer. Open J Ecol. 2017; 7:591–603. . https://doi.org/10.4236/oje.2017.710040
  28. 28. Alzreejawi SAM, Al-Juthery HWA. Effect of spray with nano NPK, complete micro fertilizers and nano amino acids on some growth and yield indicators of maize (Zea mays L.). Earth Environ Sci. 2020. https://doi.org/10.1088/1755-1315/553/1/012010
  29. 29. Weraduwage SM, Chen J, Anozie FC, Morales F, Sharkey TD. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci. 2015; https://doi.org/10.3389/fpls.2015.00167
  30. 30. Fang H, Baret F, Plummer S, Schaepman G. An overview of global leaf area index (LAI): methods, products, validation and applications. Review of Geophysics. 2019; 57(3):739–99. https://doi.org/10.1029/2018RG000608
  31. 31. Samui S, Sagar L, Sankar T, Manohar A, Rahul A, Sagar M, et al. Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Res. 2022; 57(3):136–40. https://doi.org/10.31830/2454-1761.2022.019
  32. 32. Imran M, Mahmood A, Romheld V, Neumann G. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur J Agron. 2013; https://doi.org/10.1016/j.eja.2013.04.001
  33. 33. Subramaniam A, Maheswari M. Nano fertilizers in agriculture: A review. J Nanoscience Nanotechnol Res.; 2019. https://doi.org/10.1016/j.scitotenv.2024.172533
  34. 34. Li X, Zhang L. SA and PEG-induced priming for water stress tolerance in rice seedlings. Inf Technol Agr. 2012; 134:881–7. https://doi.org/10.1007/978-3-642-27537-1_104
  35. 35. Ajithkumar K, Yogendra K, Savitha AS, Ajayakumar MY, Narayanaswamy C, Ramesh R, et al. Effect of IFFCO nano fertilizer on growth, grain yield and managing turcicum leaf blight disease in maize. Int J Plant Soil Sci. 2021; 33:19–28. https://doi.org/10.9734/ijpss/2021/v33i1630519
  36. 36. Hena RD, Chandrakar T, Srivastava LK, Nag NK, Singh DP, Akash T. Effect of nano-DAP on yield, nutrient uptake and nutrient use efficiency by rice under Bastar plateau. Pharma Innov J. 2022;11:1463–65.
  37. 37. Lahari S, Hussain SA, Parameswari YS, Sharma SHK. Grain yield and nutrient uptake of rice as influenced by the nano forms of nitrogen and zinc. Int J Environ.Climate Change. 2021;11(7):1–6. https://doi.org/10.9734/ijecc/2021/v11i730434
  38. 38. Naveen K, Sandeep M, Narender KSA, Pardeep K, Anil K, Tarun S. Effect of application of nano-dap and conventional fertilisers on rice yield. Indian Ecol Soc. 2022;5(373):957440.
  39. 39. El-Azizy FA, Habib AA, Abd-El Basit A M. Effect of nano phosphorus and potassium fertilisers on productivity and mineral content of broad bean in North Sinai. J. Soil Sci Agric Eng. 2021; 12(4):239–46 https://doi.org/10.21608/jssae.2021.161844
  40. 40. Agro Spectrum India. ICAR field trials results show Nano DAP can increase crop yield up to 27 per cent [internet]; 2024 [cited 2025 Feb 25]. Available from https://agrospectrumindia.com/2024/09/26/icar-field-trials-results-show-nano-dap-can-increase-crop-yield-up-to-27.html

Downloads

Download data is not yet available.