Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Harnessing volcanic ash for benzene mitigation and maize seed enhancement

DOI
https://doi.org/10.14719/pst.6685
Submitted
13 December 2024
Published
08-07-2025
Versions

Abstract

The presence of Benzene in aqueous solution is a great concern for the health-related issues of the living things that consume the same. Among various removal methods, the adsorption method with volcanic ash is a less laborious and eco-friendly process. With this notion, the seeds and grains of maize COH (M) 8 were coated with volcanic ash and they are utilized in this study as a biological entity to remove the benzene from the aqueous solution. Volcanic ash was characterized using FTIR, XRD, and FE-SEM-EDAX analyses, revealing key structural features, including sulfoxide functional groups, a crystalline size of 179.06 nm, and particle sizes ranging from 36.24 to 234.60 nm. Batch experiments were conducted to optimize adsorption and degradation efficiencies under different conditions. A maximum degradation efficiency of 80.62 % was achieved at a benzene concentration of 10 µg/mL within 1 hr. The efficiency increased to 87.96 % with a higher catalyst dosage at a benzene concentration of 50 µg/mL over 5 hr. Acidic conditions (pH 3) further enhanced the efficiency to 81.43 % over 5 hr. Under sunlight irradiation, a maximum degradation efficiency of 83.54 % was achieved within 1 hr. These findings establish volcanic ash as a promising, eco-friendly material for benzene adsorption in aqueous solutions, with the added advantage of enhancing seed germination and growth parameters. Its abundant availability and cost-effectiveness make it a sustainable solution for environmental remediation and agricultural applications. 

References

  1. 1. Mushtaq N, Singh DV, Bhat RA, Dervash MA, Hameed OB. Freshwater contamination: sources and hazards to aquatic biota. Fresh Water Pollution Dynamics and Remediation. 2020;27‒50. https://doi.org/10.1007/978-981-13-
  2. 8277-2_3
  3. 2. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic aromatic hydrocarbons: sources, toxicity and remediation approaches. Front Microbiol. 2020;11:562813. https://doi.org/10.3389/fmicb.2020.562813
  4. 3. Juretic D, Kusic H, Koprivanac N, Loncaric-Bozic A. Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Res. 2012;46(9):3074‒84. https://doi.org/
  5. 10.1016/j.watres.2012.03.014
  6. 4. Mathur AK, Majumder CB, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. J Hazard Mater. 2007;148(1-2):64‒74. https://doi.org/10.1016/j.jhazmat.2007.02.030
  7. 5. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 2003;37:4038‒44. https://doi.org/10.1016/S0043-1354(03)00292-6
  8. 6. Changsuphan A, Wahab MIB, Kim ONT. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in the presence of ozone and UV. Chem Eng J. 2012;18:215‒21. https://doi.org/10.1016/j.cej.2011.11.064
  9. 7. Daifullah AAM, Girgis BS. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf A Physicochem Eng Asp. 2003;214(1-3):181‒93. https://doi.org/10.1016/7757(02)00392-8
  10. 8. Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater. 2003;97(1-3):219‒43. https://doi.org/10.1016/S0304-3894(02)00263-7
  11. 9. Khorzughy SH, Eslamkish T, Ardejani FD, Heydartaemeh MR. Cadmium removal from aqueous solutions by pumice and nano-pumice. Kor J Chem Eng. 2015;32:88‒96. https://doi.org/10.1007/s11814-014-0168-2
  12. 10. Amin MA, Bina B, Majd AMS, Pourzamani H. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions. Front Environ Sci Eng. 2013;8(3):345‒56. https://doi.org/10.1016/0269-7491(95)91
  13. 052-M
  14. 11. Wild SR, Jones KC. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ pollut. 1995;88(1):91‒108. https://doi.org/10. 1016/0269-7491(95)91052-M
  15. 12. Posada-Baquero R, Martín ML, Ortega-Calvo JJ. Implementing standardized desorption extraction into bioavailability-oriented bioremediation of PAH-polluted soils. Sci Total Environ. 2019;696:134011. https://doi.org/10.
  16. 1016/j.scitotenv.2019.134011
  17. 13. Cho SH, Kim KH, Jeon YJ, Kwon EE. Pyrolysis of microalgal biomass in carbon dioxide environment. Bioresour Technol. 2015;193:185‒91. https://doi.org/10.1016/j.biortech.2015.06.119
  18. 14. Luo L, Lin S, Huang H, Zhang S. Relationships between aging of PAHs and soil properties. Environ Pollut. 2012;170:177‒82. https://doi.org/10.1016/j.envpol.2012.07.003
  19. 15. Abdelgawad H, Zinta G, Hamed BA, Selim S, Beemster G, Hozzein WN. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environ Pollut. 2020;258:113705. https://doi.org/10.1016/j.envpol.2019.113705
  20. 16. Lin Q, Shen KL, Zhao HM, Li WH. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J Hazard Mater. 2008;150:515–21. https://doi.org/10.1016/j.jhazmat.2007.04.132
  21. 17. Houshani M, Salehi-Lisar SY, Motafakkerazad R, Movafeghi A. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). Environ Sci pollut Res. 2019;26:9938‒44. https://doi.org/10.1007/s11356-019-04371-3
  22. 18. Wang Y, Li M, Liu Z, Zhao J, Chen Y. Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community. Environ. pollut. 2021;287:117616. https://doi.org/10.1016/j.envpol.2021.117616
  23. 19. KithinjiKinoti I, Ogunah J, MuturiaM’Thiruaine C, Marangu JM. Adsorption of heavy metals in contaminated water using zeolite derived from agro-wastes and clays: a review. J Chem. 2022;4250299. https:doi.org/10.1155/2022/425
  24. 0299
  25. 20. Alraddadi S. Utilization of nano volcanic ash as a natural economical adsorbent for removing cadmium from wastewater. Heliyon. 2022;8(12):e12460. https://doi.org/10.1016/j.heliyon.2022.e12460
  26. 21. Nanzyo M. Unique properties of volcanic ash soils. Glob Environ Res-Engl Ed. 2002;6(2):99‒112.
  27. 22. Xue D, Wang Y, Sun H, Fu L, Zhu L, Iu J, Wu C. Effects of soil conditioner (volcanic ash) on yield quality and rhizosphere soil characteristics of melon. Plants. 2024;13(13):1787. https://doi.org/10.3390/plants13131787
  28. 23. Floyd CN, Lefroy RDB, D'souza EJ. Soil fertility and sweet potato production on volcanic ash soils in the highlands of Papua New Guinea. Field Crops Res. 1988;19(1):1‒25. https://doi.org/10.1016/ 0378-4290(88)90030-5
  29. 24. Piccolo EL, Ceccanti C, Lauria G, Santonocito G, Rosellini I, Pezzarossa B, Landi M. From lava to leaf: Physiological responses and trace element mobility in Tilia cordata L. trees grown in volcanic ash amended urban soil. Urban For Urban Green. 2024;99:128458. https://doi.org/10.1016/j.ufug.2024.128458
  30. 25. ISTA. International rules for seed testing, International Seed Testing Association. Wallisellen, Switzerland; 2022
  31. 26. Seward W, Edwards B. Testing hypotheses for the use of Icelandic volcanic ashes as low-cost, natural fertilizers. In: EGU General Assembly Conference Abstracts; 2012. p. 11493.
  32. 27. Siddiqui MH, Al-Whaibi MH. Role of nano-SiO₂ in germination of tomato (Lycopersicum esculentum Mill.) seeds. Saudi J Biol Sci. 2014;21(1):13‒17. https://doi.org/10.1016/j.sjbs.2013.04.005
  33. 28. Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N. Influence of ZrO₂, SiO₂, Al₂O₃ and TiO₂ nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol. 2016;10(4):171‒77. https://doi.org/
  34. 10.1049/iet-nbt.2015.0007
  35. 29. Sun Y, Xu J, Miao X, Lin X, Liu W, Ren H. Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep. 2021;11(1):1014. https://doi.org/10.1038/s41598-020-79723-y
  36. 30. Krishnaarivanandhan A, Albert VA, Sujatha K, Kannan P, Arunachalam P. Effect of biogenic silica seed coating on sorghum (VAR. K 12) seed storage using different storage containers under ambient condition. J Exper Agricul Intern. 2024;46(10):113‒25. https://doi.org/10.9734/jeai/2024/v46i102930
  37. 31. Vyas R, Sharma K. Phytotoxic activity of Moringa oleifera leaf extract on germination and seedling growth of tomato. Plant Arch. 2021;21(1):1231-39. https://doi.org/10.51470/plantarchives.2021.v21.no1.164
  38. 32. Hatcher PG, Schnitzer M, Vassallo AM, Wilson MA. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies. Geochim Cosmochim Acta. 1989;53(1):125‒30. https://doi.org/10.1016/0016-7037(89)90278-0
  39. 33. Delmelle P, Villiéras F, Pelletier M. Surface area, porosity and water adsorption properties of fine volcanic ash particles. Bull Volcanol. 2005;160‒69. https://doi.org/10.1007/s00445-004-0370-x
  40. 34. Djobo JNY, Elimbi A, Tchakouté HK, Kumar S. Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. J Mater Sci. 2016;51:10301‒17. https://doi.org/10.1007/s10853-016-0257-1
  41. 35. Darmayanti L, Notodarmojo S, Damanhuri E, Kadja GTM, Mukti RR. Preparation of alkali-activated fly ash-based geopolymer and their application in the adsorption of copper (II) and zinc (II) ions. MATEC Web Conf. 2019;276:060
  42. 12. https://doi.org/10.1051/matecconf/201927606012
  43. 36. Mozgawa W, Sitarz M, Rokita M. Spectroscopic studies of different aluminosilicate structures. J Mol Struct. 1999;512:251‒57. https://doi.org/10.1016/S0022-2860(99)00165-9
  44. 37. Tchadjié LN, Djobo JN, Ranjbar N, Tchakouté HK, Kenne BD, Elimbi A, Njopwouo D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram Int. 2015;42:3046‒55. https://doi.org/10.1016/j.ceramint.20
  45. 15.10.091
  46. 38. Jadhav RR, Tapase SR, Chandanshive VV, Gophane AD, Jadhav JP. Plant and yeast consortium for efficient remediation of dyes and effluents: a biochemical and toxicological study. Int Microbiol. 2024. https://doi.org/10.10
  47. 07/s10123-023-00464-9
  48. 39. Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers. 2017;9(8):355. https://doi.org/10.3390/polym9080355
  49. 40. Amin MN, Khan K. Mechanical performance of high-strength sustainable concrete under fire incorporating locally available volcanic ash in central Harrat Rahat, Saudi Arabia. Materials. 2020;14(1):21. https://doi.org/10.3390/ma14
  50. 010021
  51. 41. Riley CM, Rose WI, Bluth GJS. Quantitative shape measurements of distal volcanic ash. J Geophys Res. 2003;108
  52. (B10):2504. https://doi.org/10.1029/2001JB000818
  53. 42. Mills OP, Rose WI. Shape and surface area measurements using scanning electron microscope stereo-pair images of volcanic ash particles. Geosphere. 2010;6(6):805‒11. https://doi.org/10.1130/GES00608.1
  54. 43. Romano AL, Rovere EI. Application of electron microscopy on volcanic ash. Microsc Microanal. 2020;26(S1):19‒20. https://doi.org/10.1017/S1431927620000331
  55. 44. Hussein MS, Ahmed MJ. Fixed bed and batch adsorption of benzene and toluene from aromatic hydrocarbons on 5A molecular sieve zeolite. Mater Chem Phys. 2016;181:512‒17. https://doi.org/10.1016/j.matchemphys.2016.06.088
  56. 45. Pavithra S, Thandapani G, Sugashini S, Sudha PN, Alkhamis HH, Alrefaei AF, Almutairi MH. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere. 2021;271:129415. https://doi.org/ 10.1016/j.chemosphere.2020.129415
  57. 46. Ghanbarian M, Nabizadeh R, Mahvi AH, Nasseri S, Naddafi K. Photocatalytic degradation of linear alkyl benzene sulfonate from aqueous solution by TiO₂ nanoparticles. J Environ Health Sci Eng. 2011;9:309‒16.
  58. 47. Choma J, Szczęśniak B, Kapusta A, Jaroniec M. A concise review on porous adsorbents for benzene and other volatile organic compounds. Molecules. 2024;29(23):5677. https://doi.org/10.3390/molecules29235677
  59. 48. Martínez-del-Pozo I, Esbrí JM, García-Lorenzo L, López-Andrés S. Synthesis of zeolites from volcanic ash (Tajogaite, Spain) for the remediation of waters contaminated by fluoride. Environ Sci Pollut Res. 2024;31(5):7058‒72. https://doi.org/10.1007/s11356-023-31623-0
  60. 49. Osagie E, Owabor CN. Adsorption of benzene in batch system in natural clay and sandy soil. Adv Chem Eng Sci. 2015;5(3):352. https://doi.org/10.4236/aces.2015.53037
  61. 50. Akpa JG, Nmegbu CGJ. Adsorption of benzene on activated carbon from agricultural waste materials. Res J Chem Sci. 2014;2231:606X.
  62. 51. Mohammadi L, Bazrafshan E, Noroozifar M, Ansari-Moghaddam A, Barahuie F, Balarak D. Adsorptive removal of benzene and toluene from aqueous environments by cupric oxide nanoparticles: kinetics and isotherm studies. J Chem. 2017;2017:1‒10. https://doi.org/10.1155/2017/2069519
  63. 52. Özdemir U, Özbay B, Veli S, Zor S. Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem Eng J. 2011;178:183‒90. https://doi.org/10.1016/j.cej.2011.10.046
  64. 53. Thu NT, Thi N, Quang TV, Hong NK, Minh NT, Hoai LTN. Synthesis, characterization and effect of pH on degradation of dyes of copper-doped TiO₂. J Exp Nanosci. 2016;11(3):226‒38. https://doi.org/10.1080/17458080.2015.
  65. 1053541
  66. 54. Farias MF, Domingos YS, Fernandes GJT, Castro FL, Fernandes Jr VJ, Costa MJF, et al. Effect of acidity in the removal-degradation of benzene in water catalyzed by Co-MCM-41 in medium containing hydrogen peroxide. Microporous Mesoporous Mater. 2018;258:33‒40. https://doi.org/10.1016/j.micromeso.2017.09.003
  67. 55. Jafari AJ, Kalantari R, Kermani M, HashamFirooz M. Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight. Chem Pap. 2019;73:635‒44. https://doi.org/10.1007/s11696-018-0621-5
  68. 56. Lyu J, Zhu L, Burda C. Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO₂. Catal Today. 2014;225:24‒33. https://doi.org/10.1016/j.cattod.2013.10.089
  69. 57. Zhang T, Oyama T, Horikoshi S, Zhao J, Hidaka H, Serpone N. Assessment and influence of operational parameters on the TiO₂ photocatalytic degradation of sodium benzene sulfonate under highly concentrated solar light illumination. Sol Energy. 2001;71(5):305‒13. https://doi.org/10.1016/S0038-092X(01)00056-1
  70. 58. Djobo JNY, Tome S. Insights into alkali and acid-activated volcanic ash-based materials: A review. Cem Concr Compos. 2024;105660. https://doi.org/10.1016/j.cemconcomp.2024.105660
  71. 59. Ciriminna R, Scurria A, Tizza G, Pagliaro M. Volcanic ash as multi‐nutrient mineral fertilizer: Science and early applications. J Sci Food Agric. 2022;2(11):528‒34. https://doi.org/10.1002/jsf2.87
  72. 60. El-Desoky A, Hassan A, Mahmoud A. Volcanic ash as a material for soil conditioner and fertility. J Soil Sci and Agri Eng. 2018;9(10):491‒95. https://doi.org/10.21608/JSSAE.2018.36445
  73. 61. Jam BJ, Shekari F, Andalibi B, Fotovat R, Jafarian V, Najafi J, Mastinu A. Impact of silicon foliar application on the growth and physiological traits of Carthamus tinctorius L. exposed to salt stress. Silicon. 2023;15(3):1235‒45. https://doi.org/10.21608/jpp.2020.149789
  74. 62. Ahmed S, Iqbal M, Ahmad Z, Iqbal MA, Artyszak A, Sabagh AE, Hossain A. Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils. Environ Sci Pollut Res. 2023;30(14):41002‒13. https://doi.org/10.1007/s11356-023-25189-0
  75. 63. Chijioke SC, Onuoha CH, Chukwudoruo CS. Bioactive compositions and identification of functional groups of selected medicinal plants. GSC Biol Pharm Sci. 2024;27(1):8‒27. https://doi.org/10.30574/gscbps.2024.27.1.0106
  76. 64. Dickson MPB, Manga DJ, Pougnong TE, Baenla J, Ebongue NL, Elimbi A. Effects of kinetic parameters on initial setting time, microstructure and mechanical strength of volcanic ash-based phosphate inorganic polymers. Silicon. 2022;1‒13. https://doi.org/10.1007/s12633-021-01140-1

Downloads

Download data is not yet available.