Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effect of ascorbic acid on phenolic content and antioxidant activity of Carthamus tinctorius L. cultivars: An in vitro comparative analysis

DOI
https://doi.org/10.14719/pst.6714
Submitted
15 December 2024
Published
13-06-2025
Versions

Abstract

Climate changes are resulting in water scarcity, necessitating the cultivation of important crops that fulfill food demands and provide other benefits to humanity. Safflower (Carthamus tinctorius L.), a Rabi crop, is rich in several important compounds with potential use in pharmacology, agriculture and industry. The diverse profiles of mono- and polyunsaturated fats render it a valuable oilseed crop. The present research is structured into 2 sections. In phase I, we examined the effects of exogenously administered ascorbic acid (AsA) on the phenolic compounds, osmoprotectants and antioxidants of 2 safflower cultivars (Thori-76 and CV-256) under drought stress conditions. The cultivar CV-256 exhibited elevated total phenolic content in less-watered circumstances due to the application of exogenous ascorbic acid. Antioxidant enzymes, including catalase, peroxidase and superoxide dismutase (SOD), were activated under conditions of water deficiency. Both cultivars exhibited a marked increase in superoxide dismutase activity due to the use of foliar ascorbic acid. The second part of the study focuses on the antioxidative and hepatoprotective characteristics of safflowers by blocking HCV entrance into cells and identifying its potential compounds efficient for NS3/4 inhibition. In vitro research demonstrated that both cultivars had substantial antioxidative capability and inhibited viral entrance into cells. In silico analyses found Coumaroyl, Hydroxyarctigenin and Pinoresinol as prospective antagonists of NS3/4. It was also shown that p-coumaroyl, an antioxidant, exhibited strongest bonding affinity with the receptor protein.

References

  1. 1. Dietz KJ, Zorb C, Geilfus CMJPB. Drought and crop yield. Plant Biol. 2021;23(6):881‒93. https://doi.org/10.1111/plb.13304
  2. 2. Kaur M, Sodhi HS. Combinative effect of seed priming with plant growth-promoting rhizobacteria and green chemicals on plant growth and stress tolerance. In: New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier. 2022. p. 265‒88. https://doi.org/10.1016/B978-0-323-85581-5.00004-5
  3. 3. Carraro E, Di Iorio A. Eligible strategies of drought response to improve drought resistance in woody crops: A mini-review. Plant Biotechnol Rep. 2022;16(3):265‒82. https://doi.org/10.1007/s11816-021-00733-x
  4. 4. Premkumar A. Chapter-5 Review on plant response to abiotic stress. BC Walunjkar, Chief Ed. AkiNik Publications, New Delhi. 2023. 73 p
  5. 5. Rana AW, Gill S, Akram I. Promoting oil seed crops in Pakistan: prospects and constraints. Intl Food Policy Res Inst. 2022. https://doi.org/10.2499/p15738coll2.135063
  6. 6. Mishra S, Sharma A, Srivastava AK. Ascorbic acid: A metabolite switch for designing stress-smart crops. Crit Rev Biotechnol. 2024;44(7):1350‒66. https://doi.org/10.1080/07388551.2023.2286428
  7. 7. Elkelish A, Qari SH, Mazrou YS, Abdelaal KA, Hafez YM, Abu-Elsaoud AM, et al. Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants and transcriptional regulation of catalase and heat shock proteins. Plants. 2020;9(4):431. https://doi.org/10.3390/plants9040431
  8. 8. Hellal F, Abou Basha Dm, Abdel-Kader Hh, El Sayed Sjajop, Sciences S. Effect of ascorbic acid application and water levels on growth, yield components of pea plants in newly reclaimed soil of Egypt. Asian J Plant Soil Sci. 2021;175‒86. http://doi.org/10.56557/ajopss/2021/v6i133
  9. 9. Celi GE, Gratao PL, Lanza MG, Reis AR. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Int J Plant Physiol Biochem. 2023;202:107970. https://doi.org/10.1016/j.plaphy.2023.107970
  10. 10. El-Beltagi HS, Shah S, Ullah S, Sulaiman, Mansour AT, Shalaby TAJS. Impacts of ascorbic acid and alpha-tocopherol on chickpea (Cicer arietinum L.) grown in water deficit regimes for sustainable production. Sustain. 2022;14(14):8861. https://doi.org/10.3390/su14148861
  11. 11. Saleem N, Noreen S, Akhter MS, Alshaharni MO, Alzuaibr FM, Al-zoubi OM, et al. Ascorbic acid-mediated enhancement of antioxidants and photosynthetic efficiency: A strategy for enhancing canola yield under salt stress. S Afr J Bot. 2024;173:196‒207. https://doi.org/10.1016/j.sajb.2024.08.018
  12. 12. Chen Y, Li M, Wen J, Pan X, Deng Z, Chen J, et al. Pharmacological activities of safflower yellow and its clinical applications. Evid Based Complement Alternat Med. 2022;2022(1):2108557. https://doi.org/10.1155/2022/2108557
  13. 13. Kola P, Metowogo K, Manjula S, Katawa G, Elkhenany H, Mruthunjaya K, et al. Ethnopharmacological evaluation of antioxidant, anti-angiogenic and anti-inflammatory activity of some traditional medicinal plants used for treatment of cancer in Togo/Africa. J Ethnopharmacol. 2022;283:114673. https://doi.org/10.1016/j.jep.2021.114673
  14. 14. Ai G, Wu X, Dou Y, Huang R, Zhong L, Liu Y, et al. Oxyberberine, a novel HO-1 agonist, effectively ameliorates oxidative stress and inflammatory response in LPS/D-GalN induced acute liver injury mice via coactivating erythrocyte metabolism and Nrf2 signaling pathway. Food Chem Toxicol. 2022;166:113215. https://doi.org/10.1016/j.fct.2022.113215
  15. 15. Ansari P, Samia JF, Khan JT, Rafi MR, Rahman MS, Rahman AB, et al. Protective effects of medicinal plant-based foods against diabetes: A review on pharmacology, phytochemistry and molecular mechanisms. Nutr. 2023;15(14):3266. https://doi.org/10.3390/nu15143266
  16. 16. Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (safflower) flower extract attenuates hepatic injury and steatosis in a rat model of type 2 diabetes mellitus via Nrf2-dependent hypoglycemic, antioxidant and hypolipidemic effects. Antioxid. 2024;13(9):1098. https://doi.org/10.3390/antiox13091098
  17. 17. El-Dashlouty M, Fatma E, Khidr SA, Asmaa ANAE-R, Saif AA. Fighting hepatotoxication with CCl4 of male albino rats using plant flowers. J Home Econ. 2020;30:63‒92.
  18. 18. Wang Y, Wu J, Wang D, Yang R, Liu Q. Traditional Chinese medicine targeting heat shock proteins as therapeutic strategy for heart failure. Front Pharmacol. 2022;12:814243. https://doi.org/10.3389/fphar.2021.814243
  19. 19. Golkar P, Hamzeh E, Mirmohammadi Maibody SA, Taghizadeh M. Safflower’s (Carthamus tinctorius L.) physio-biochemical mechanisms to improve its drought tolerance. Acta Physiol Plant. 2021;43(5):82‒96. https://doi.org/10.1007/s11738-021-03254-w
  20. 20. Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN, et al. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants. 2020;9(1):104. https://doi.org/10.3390/plants9010104
  21. 21. Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah OJC. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmet. 2019;6(3):55. http://doi.org/10.3390/cosmetics6030055
  22. 22. Xin L, Guo L, Edirs S, Zhang Z, Cai C, Yang Y, et al. An efficient deacidification process for safflower seed oil with high nutritional property through optimized ultrasonic-assisted technology. Mol. 2022;27(7):2305. https://doi.org/10.3390/molecules27072305
  23. 23. Le C, Sirajee R, Steenbergen R, Joyce MA, Addison WR, Tyrrell DL. In vitro infection with hepatitis B virus using differentiated human serum culture of Huh7. 5-NTCP cells without requiring dimethyl sulfoxide. Viruses. 2021;13(1):97. https://doi.org/10.3390/v1301009724
  24. 24. Teimourpour R, Meshkat Z, Gholoubi A, Nomani H, Rostami S. Viral load analysis of hepatitis C virus in Huh7. 5 cell culture system. Jundishapur J Microbiol. 2015;8(5):e19279. https://doi.org/10.5812/jjm.8(5)2015.19279
  25. 25. Sainz B, Barretto N, Yu X, Corcoran P, Uprichard SL. Permissiveness of human hepatoma cell lines for HCV infection. Virol J. 2012;9:30. https://doi.org/10.1186/1743-422X-9-30
  26. 26. Ma Z, Li C, Qiao Y, Lu C, Li J, Song W, et al. Safflower yellow B suppresses HepG2 cell injury induced by oxidative stress through the AKT/Nrf2 pathway. Int J Mol Med. 2016;37(3):603‒12. https://doi.org/10.3892/ijmm.2016.2462
  27. 27. Hussain AI, Rathore HA, Sattar MZ, Chatha SA, ud din Ahmad F, Ahmad A, et al. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind Crop Prod. 2013;45:416‒22. http://doi.org/10.1016/j.indcrop.2013.01.002
  28. 28. Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V, editors. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. Bioinform. 2012;12:1‒13. https://doi.org/10.1186/1471-2105-13-S17-S7
  29. 29. Mani V, Lee S-K, Yeo Y, Hahn B-SJM. A metabolic perspective and opportunities in pharmacologically important safflower. Metabolites. 2020;10(6):253. https://doi.org/10.3390/metabo10060253
  30. 30. Nazir M, Arif S, Ahmed I, Khalid N. Safflower (Carthamus tinctorius) seed. Tanwar B, Goyal A, editors. Oilseeds: health attributes and food applications. 1st ed. Springer, Singapore. 2020. p. 427–53 http://doi.org/10.1007/978-981-15-4194-0_17
  31. 31. Emongor V, Emongor R. Safflower (Carthamus tinctorius L.). Neglected and underutilized crops: Elsevier; 2023. p. 683‒731 https://doi.org/10.1016/B978-0-323-90537-4.00024-7
  32. 32. El-Beltagi HS, Sulaiman, Mohamed ME, Ullah S, Shah S. Effects of ascorbic acid and/or α-tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under drought condition. Agron. 2022;12(10):2296. https://doi.org/10.3390/agronomy12102296
  33. 33. Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants. 2024;13(13):1808. https://doi.org/10.3390/plants13131808
  34. 34. Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic stress and reactive oxygen species: generation, signaling and defense mechanisms. Antioxid. 2021;10(2):277. https://doi.org/10.3390/antiox10020277
  35. 35. Wang Y, Tang C, Zhang H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. Food Drug Anal. 2015;23(2):310‒17. https://doi.org/10.1016/j.jfda.2014.10.002
  36. 36. Khazaei Z, Estaji A. Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiol Plant. 2020;42(7):118. https://doi.org/10.1007/s11738-020-03106-z
  37. 37. Dikilitas M, Simsek E, Roychoudhury A. Role of proline and glycine betaine in overcoming abiotic stresses. 1st ed. John Wiley and Sons Ltd. 2020. p. 1‒23. https://doi.org/10.1002/9781119552154.ch1
  38. 38. Semida WM, Abdelkhalik A, Rady MO, Marey RA, Abd El-Mageed TA. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic. 2020;272:109580. https://doi.org/10.1016/j.scienta.2020.109580
  39. 39. Chugaeva UY, Raouf M, Morozova NS, Mahdavian L. Effects of L-ascorbic acid (C6H8O6: Vit-C) on collagen amino acids: DFT study. Amino Acids. 2023;55(11):1655‒64. https://doi.org/10.1007/s00726-023-03339-5
  40. 40. Asl NH, Vash FF, Roshdi M, Shekari BM, Gaffari M. The effect of exogenous application of salicylic acid and ascorbic acid on forage quality and yield of maize (Zea mays L.) under water deficit conditions. Plant Soil Environ. 2024;70(3):142‒53. https://doi.org/10.17221/181/2023-PSE
  41. 41. Nawaz M, Wang Z. Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: A new insight. Sci Rep. 2020;10(1):6942. https://doi.org/10.1038/s41598-020-63447-0
  42. 42. Shafiq S, Akram NA, Ashraf M, Garcia-Caparros P, Ali OM, Latef AA. Influence of glycine betaine (natural and synthetic) on growth, metabolism and yield production of drought-stressed maize (Zea mays L.). Pants. 2021;10(11):2540. https://doi.org/10.3390/plants10112540
  43. 43. Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxid. 2020;9(8):681. https://doi.org/10.3390/antiox9080681
  44. 44. Qamer Z, Chaudhary MT, Du X, Hinze L, Azhar MT. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J Cotton Res. 2021;4(1):9. https://doi.org/10.1186/s42397-021-00086-4
  45. 45. Bukhari SA, Farah N, Mustafa G, Mahmood S, Naqvi SA. Magneto-priming improved nutraceutical potential and antimicrobial activity of Momordica charantia L. without affecting nutritive value. Appl Biochem Biotechnol. 2019;188:878‒92. https://doi.org/10.1007/s12010-019-02955-w
  46. 46. Den NZ, Mustafa G, Bukhari SA, Anjum F, Qasim M, Shahid M. Enhancement of nutraceutical and antioxidant potential of sunflower hybrid seed varieties through chemical priming. Pak J Pharm Sci. 2019;32(4):1901‒07.
  47. 47. Bolouri P, Salami R, Kouhi S, Kordi M, Lajayer AB, Hadian J, et al. Applications of essential oils and plant extracts in different industries. Mol. 2022;27(24):8999. https://doi.org/10.3390/molecules27248999
  48. 48. Cheng H, Yang C, Ge P, Liu Y, Zafar MM, Hu B, et al. Genetic diversity, clinical uses and phytochemical and pharmacological properties of safflower (Carthamus tinctorius L.): An important medicinal plant. Front Pharmacol. 2024;15:1374680. https://doi.org/10.3389/fphar.2024.1374680

Downloads

Download data is not yet available.