Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

A study on the trends and seasonal fluctuations of black carbon aerosols in the elevated region of Ooty, Western Ghats, Tamil Nadu, India

DOI
https://doi.org/10.14719/pst.6758
Submitted
17 December 2024
Published
09-03-2025
Versions

Abstract

The accelerating effects of climate change, driven by rising greenhouse gas emissions, necessitate identifying key contributors like aerosols, mainly black carbon (BC), due to their significant impact on global warming. This study investigates the temporal and seasonal dynamics of BC aerosols in Ooty, Tamil Nadu, India, using a decade (2013–2023) of data from an Aethalometer. Annual BC concentrations varied from 0.51 µg/m³ (2020) to 1.1 µg/m³ (2023), with a decadal mean of 0.75 ± 0.26 µg/m³. Distinct season al variations were observed, with summer BC concentrations ranging from 0.9 to 1.6 µg/m³ (mean: 1.3 µg/m³) and monsoon values significantly lower at 0.2–0.5 µg/m³ (mean: 0.4 µg/m³). Winter exhibited a seasonal mean of 1.1 µg/m³, while post-monsoon BC concentrations averaged 0.6 µg/m³. Temperature (20–28.6°C), relative humidity (49–93%), and rainfall (0.4 7.81 mm/day) influenced the observed trends. April consistently showed peak BC levels (up to 1.87 µg/m³), while 2020 recorded the lowest due to reduced emissions. Seasonal trends revealed increasing BC levels from December to April, declining during the monsoon months (June–November). These findings underscore the need for sustained monitoring and mitigation strategies in high-altitude regions to address BCs’ climatic impacts, aiding global efforts against climate change.

References

  1. Kowsalya M, Sebastian SP, Jayabalakrishnan RM. Aerosol black carbon measurement at high altitude western ghats location of Ooty, Tami Nadu. Int J Environ Clim Change. 2020;10(12):390?96. https://doi.org/10.9734/ijecc/2020/v10i1230314
  2. Myhre G, Myhre CL, Samset BH, Storelvmo T. Aerosols and their relation to global climate and climate sensitivity. Nat Edu Know. 2013;4(5):7.
  3. Takemura T, Suzuki K. Weak global warming mitigation by reducing black carbon emissions. Sci Rep. 2019;9(1):4419. https://doi.org/10.1038/s41598-019-41181-6
  4. Flanner MG, Zender CS, Randerson JT, Rasch PJ. Present?day climate forcing and response from black carbon in snow. J Geophys Res: Atmos. 2007;112(D11). https://doi.org/10.1029/2006JD008003
  5. Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nature Geosci. 2008;1(4):221?27. https://doi.org/10.1038/ngeo156
  6. Valentini S, Barnaba F, Bernardoni V, Calzolai G, Costabile F, Di Liberto L, et al. Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmos Res. 2020;235:104799. https://doi.org/10.1016/j.atmosres.2019.104799
  7. Mor V, Dhankhar R, Attri SD, Soni VK, Sateesh M, Taneja K. Assessment of aerosols optical properties and radiative forcing over an Urban site in North-Western India. Environ Techno. 2017;38(10):1232–44. https://doi.org/10.1080/09593330.2016.1221473
  8. Vachaspati CV, Begam GR, Ahammed YN, Kumar KR, Reddy RR. Characterization of aerosol optical properties and model computed radiative forcing over a semi-arid region, Kadapa in India. Atmos Res. 2018;209:36–49. https://doi.org/10.1016/j.atmosres.2018.03.013
  9. Kumar RR, Soni VK, Jain MK. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. Sci Total Environ. 2020;723:138060. https://doi.org/10.1016/j.scitotenv.2020.138060
  10. Kumar R, Ghude SD, Biswas M, Jena C, Alessandrini S, Debnath S, et al. Enhancing accuracy of air quality and temperature forecasts during paddy crop residue burning season in Delhi via chemical data assimilation. J Geophys Res: Atmos. 2020;125(17):e2020JD033019. https://doi.org/10.1029/2020JD033019
  11. Dhar P, Banik T, De BK, Gogoi MM, Babu SS, Guha A. Study of aerosol types and seasonal sources using wavelength-dependent Ångström exponent over North-East India: ground-based measurement and satellite remote sensing. Adv Space Res. 2018;62(5):1049–64. https://doi.org/10.1016/j.asr.2018.06.017
  12. Sarangi B, Ramachandran S, Rajesh TA, Dhaker VK. Black carbon linked aerosol hygroscopic growth: Size and mixing state are crucial. Atmos Environ. 2019;200:110–18. https://doi.org/10.1016/j.atmosenv.2018.12.001
  13. Priyanga S, Boomiraj K, Jothimani P, Kannan B, Dheebakaran G, Maheswari M. A decadal, temporal and seasonal variation of black carbon aerosol at high altitude region of Ooty, Tamil Nadu, India. Int J Environ Clim Change. 2023;13(9):3414–25. https://doi.org/10.9734/ijecc/2023/v13i92719
  14. Viegas C, Monteiro A, Santos DM, Faria T, Caetano LA, Carolino E, et al. Filters from taxis air conditioning system: A tool to characterize driver's occupational exposure to bioburden?. Environ Res. 2018;164:522?29. https://doi.org/10.1016/j.envres.2018.03.032
  15. Acosta-Martinez V, Van Pelt S, Moore-Kucera J, Baddock MC, Zobeck TM. Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeol Res. 2015;18:99?113. https://doi.org/10.1016/j.aeolia.2015.06.001
  16. Shree S, Natha RM, Jayabalakrishnan M, Maheswari M, Kumaraperumal R. Comparative analysis of aerosol optical properties over high altitude region of western ghats in southern India. Int J Environ Clim Change. 2022;12(10):1060?66. https://doi.org/10.9734/ijecc/2022/v12i1030899
  17. Hansen AD, Rosen H, Novakov T. The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ. 1984 Jul 1;36:191?96. https://doi.org/10.1016/0048-9697(84)90265-1
  18. Novakov T, Ramanathan V, Hansen J, Kirchstetter T, Sato M, Sinton J, Sathaye J. Large historical changes of fossil?fuel black carbon aerosols. Geophy Res Lett. 2003;30(6):1–4. https://doi.org/10.1029/2002GL016345
  19. Satheesh S, Moorthy KK, Babu SS, Vinoj V, Dutt C. Climate implications of large warming by elevated aerosol over India. Geophysical Res Lett. 2008;35(19):1–6. https://doi.org/10.1029/2008GL034944
  20. Babu SS, Chaubey JP, Moorthy K, Gogoi MM, Kompalli SK, Sreekanth V, et al. High altitude (? 4520 m amsl) measurements of black carbon aerosols over western trans?Himalayas: Seasonal heterogeneity and source apportionment. J of Geophys Res: Atmospheres. 2011;116(D24). https://doi.org/10.1029/2011JD016722
  21. Gogoi MM, Moorthy KK, Kompalli SK, Chaubey JP, Babu SS, Manoj M, Prabhu TP. Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observations over western trans-Himalayas. Atmos Environ. 2014; 84:262–74. https://doi.org/10.1016/j.atmosenv.2013.11.029
  22. Bernardoni V, Elser M, Valli G, Valentini S, Bigi A, Fermo P, Vecchi R. Size-segregated aerosol in a hotspot pollution urban area: Chemical composition and three-way source apportionment. Environ Poll. 2017;231:601–11. https://doi.org/10.1016/j.envpol.2017.08.040
  23. Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, et al. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. J Geophys Res: Atmosp. 2013;118(20):11–794. https://doi.org/10.1002/2013JD020507
  24. Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, et al. Aerosol mass and black carbon concentrations, a two-year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phy. 2010;10(17):8551–62. https://doi.org/10.5194/acp-10-8551-2010
  25. Udayasoorian C, Jayabalakrishnan RM, Suguna AR, Gogoi MM, Babu S. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India. Annales Geophysicae. 2014;32(10):1361–71. https://doi.org/10.5194/angeo-32-1361-2014
  26. Bhaskar BV, Rajeshkumar RM, Muthuchelian K, Ramachandran S. Spatial, temporal and source study of black carbon in the atmospheric aerosols over different altitude regions in Southern India. J Atmos Solar Terres Phy. 2018;179:416–24.
  27. https://doi.org/10.1016/j.jastp.2018.09.009
  28. Jones GS, Christidis N, Stott PA. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near-surface temperature changes. Atmos Chem Phy. 2011;11(2):799–816. https://doi.org/10.5194/acp-11-799-2011
  29. Rajeshkumar RM, Bhaskar BV, Muthuchelian K. Characteristics of black carbon aerosol at an educational site in Southern India. Environ Asia. 2019;12(1):108–19.

Downloads

Download data is not yet available.