Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Antibacterial activity of plant extracts commonly used as folk medicines collected from National Parks in Jambi, Indonesia

DOI
https://doi.org/10.14719/pst.6828
Submitted
20 December 2024
Published
22-07-2025 — Updated on 29-07-2025
Versions

Abstract

The local communities in Jambi used medicinal plants collected from national parks, such as Calamus manan, Helminthostachys zeylanica and Zingiber montanum, to treat illnesses. This study aims to evaluate the antibacterial activity of C. manan, H. zeylanica and Z. montanum against reference strains of Escherichia coli [ATCC 25922], Pseudomonas aeruginosa [ATCC 15442] and Staphylococcus aureus [ATCC 6538]. The assessment was conducted using disc and agar well diffusion methods, where all plant extracts showed antibacterial activity against the tested bacteria. Chloroform extract of C. manan (CMC) stems had the most significant growth inhibition zone against all reference strains for both methods. Specifically, the disc and agar well diffusion values of CMC extract observed against S. aureus were 17.67 mm and 22.00 mm respectively. MIC determination also indicated that CMC extract possesses the most significant antibacterial activity, with the lowest value observed against S. aureus at 0.312 mg/mL. The SEM results also showed the damage to the morphology and structure of S. aureus cells, especially the damaged cytoplasmic cell walls and membranes. The GC-MS analysis identified 30 different compounds from the CMC extract, with 4,5-dimethyl-1-hexene and terpineol-4 being the main components. These compounds are known for their potential as antimicrobial, antioxidant and anti-inflammatory agents. Considering these results, it was concluded that Jambi medicinal plants, particularly C. manan, exhibit antibacterial activities and contain secondary metabolites that may serve as a potential source of antibacterial compounds.

References

  1. 1. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019;5(2):117–37. https://doi.org/10.3934/microbiol.2019.2.117
  2. 2. WHO. Guidelines on developing consumer information on proper use of traditional, complementary and alternative medicine. World Health Organization; 2004. p. 87
  3. 3. Fatima N, Nayeem N. Toxic effects as a result of herbal medicine intake. In: Toxicology - new aspects to this scientific conundrum. InTech; 2016. https://doi.org/10.5772/64468
  4. 4. Mairida D, Muhadiono M, Hilwan I. Ethnobotanical study of Rattans on Suku Anak Dalam community in Bukit Duabelas Nasional Park. Biosaintifika: J Biol Biol Educ. 2016;8(1):64. https://doi.org/10.29244/medkon.25.1.73-80
  5. 5. Has DH, Zuhud EAM, Hikmat A. Ethnobotany of medicine in the Penguluh tribe community in Kphp Limau Unit VII Hulu Sarolangun, Jambi. Conserv Med. 2020;25(1):73–80. https://doi.org/10.29244/medkon.25.1.73-80
  6. 6. Adriadi A, Nursanti N, Puspitasari R. The diversity of medicinal plants of the community in the Talang Rencong forest, Pulau Sangkar village, Kerinci Regency, Jambi. Conserv Med. 2020;25(2):134–39. https://doi.org/10.29244/medkon.25.2.134-139
  7. 7. Hariyadi B, Ticktin T. Uras: Medicinal and ritual plants of Serampas, Jambi Indonesia. Ethnobot Res Bot. 2012;10:133–49. https://doi.org/10.17348/era.10.0.133-149
  8. 8. Susanti T, Suraida, Natalia D, Ningsih T. Local knowledge of Suku Anak Dalam about the utilization of medical plants in Bukit Dua Belas Sarolangun National Park Area. Biospecies. 2023;16(2):19–26. https://doi.org/10.22437/biospecies.v16i2.26629
  9. 9. Salusu HD, Ariani F, Budiarso E, Kusuma IW, Arung ET. Increased benefits of Calamus manan Miq. fruit by its potential bioactivity. Proceed J Symp Trop Stud. 2021;11:180–85. https://doi.org/10.2991/absr.k.210408.030
  10. 10. Hartini S. Helminthostachys zeylanica (L.) Hook: Its potential as a future medicine. Botanical Garden News. 2011;11(1):34–37.
  11. 11. Fitrya F, Anwar L, Eliza E, Muharni M. Ugonin J flavonoid from tunjuk langit (Helminthostachys zeylanica Linn.) root extract. Indones J Chem. 2010;10(2):226–31. https://doi.org/10.22146/ijc.21465
  12. 12. Singh TT, Sharma HM. An ethnobotanical study of monocotyledonous medicinal plants used by the scheduled caste community of Andro in Imphal East district, Manipur (India). Res J Life Sci Bioinfom Pharm Chem Sci. 2018;4(4):55–72. https://doi.org/10.26479/2018.0404.04
  13. 13. Silalahi M. Botani, secondary metabolites and bioactivity of bangle (Zingiber montanum). J Health Sci. 2019;7(1):73–83.
  14. 14. Verma RS. Ethnobotany, phytochemistry and pharmacology of Zingiber cassumunar Roxb. (Zingiberaceae). J Sci Food Agric. 2018;98(1):1053–57. https://doi.org/10.1055/s-0031-1273656
  15. 15. Bariah S, Mayasari U. Activity test of manau rattan fruit extract (Calamus manan) against the growth of Vibrio cholerase and Staphylococcus epidermidis bacteria. BEST J. 2023;6(1):634–40. https://doi.org/10.30821/kfl:jibt.v6i1.11762
  16. 16. Mahdiyah D, Maulina N, Hakim AR, Mukti BH. Antimicrobial activity of manau rattan seed extract (Calamus manan Miq.) against Salmonella typhi and Candida albicans. Al-Kauniyah: J Biologi. 2024;17(2):247–56. https://doi.org/10.15408/kauniyah.v17i2.23122
  17. 17. Yenn TW, Ring LC, Zahan KA, Rahman MS, Tan WN, Alaudin BJ. Chemical composition and antimicrobial efficacy of Helminthostachys zeylanica against foodborne Bacillus cereus. Nat Prod Sci. 2018;24(1):66–70. https://doi.org/10.20307/nps.2018.24.1.66
  18. 18. Army MK, Khodijah R, Haryani Y, Teruna HY, Hendra R. Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts. J Pharm Pharmacogn Res. 2023;11(2):291–96. https://doi.org/10.56499/jppres22.1540_11.2.291
  19. 19. Noviyanto F, Hodijah S, Yusransyah Y. Activity of bangle leaf extract (Zingiber purpureum Roxb.) against the growth of Pseudomonas aeruginosa bacteria. J Syifa Sci Clin Res. 2020;2(1):31–38. https://doi.org/10.37311/jsscr.v2i1.2665
  20. 20. Risnawati E, Ainurofiq A, Wartono WM. Study of antibacterial activity and identification of the most active fraction from ethanol extraction of Zingiber cassumunar Roxb. rhizomes by vacuum liquid chromatography. J Chem Pharm Res. 2014;6(9):101–07.
  21. 21. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga and Zingiber cassumunar from Malaysia. Asian Pac J Trop Med. 2012;5(3):202–09. https://doi.org/10.1016/S1995-7645(12)60025-X
  22. 22. Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb. against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017;10(5):586–92. https://doi.org/10.1016/j.jiph.2017.01.008
  23. 23. Huang YL, Shen CC, Shen YC, Chiou WF, Chen CC. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica. J Nat Prod. 2009;72(2):1273–78. https://doi.org/10.1021/acs.jnatprod.5b01164
  24. 24. Wu KC, Huang SS, Kuo YH, Ho YL, Yang CS, Chang YS, et al. Ugonin M, a Helminthostachys zeylanica constituent, prevents lps-induced acute lung injury through TLR4-mediated mapk and NF-κb signaling pathways. Mol. 2017;22(4):1–15. https://doi.org/10.3390/molecules22040573
  25. 25. Hermansyah B, Utami WS. Bioactivity of a compound of standardized bangle (Zingiber cassumunar Roxb.) extract fraction as a complimentary therapy to prevent malaria complications. J Agromed Med Sci. 2015;1(2):19–25. https://doi.org/10.19184/ams.v1i2.1955
  26. 26. Hassan MM, Adhikari-Devkota A, Imai T, Devkota HP. Zerumbone and kaempferol derivatives from the rhizomes of Zingiber montanum (J. Koenig) link ex a. dietr. from Bangladesh. MDPI Sep. 2019;6(31):1–8. https://doi.org/10.3390/separations6020031
  27. 27. Kantayos V, Paisooksantivatana Y. Antioxidant activity and selected chemical components of 10 Zingiber spp. in Thailand. J Dev Sustain Agric. 2012;(1):89–96.
  28. 28. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Pennsylvania:CLSI; 2018. p. 72
  29. 29. Owusu E, Ahorlu MM, Afutu E, Akumwena A, Asare GA. Antimicrobial activity of selected medicinal plants from a Sub-Saharan African country against bacterial pathogens from post-operative wound infections. Med Sci. 2021;9(2):23. https://doi.org/10.3390/medsci9020023
  30. 30. Fitriana WD, Istiqomah SBT, Putri DA, Ersam T, Purnomo AS, Nurlatifah, et al. Antibacterial and toxicity activities of Indonesian herbal medicine extracts used for postpartum treatment. Hayati. 2021;28(3):232–39. https://doi.org/10.4308/hjb.28.3.232
  31. 31. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Pennsylvania: CLSI; Vol. 30; 2020.
  32. 32. Salusu HD, Obeth E, Zarta AR, Nurmarini E, Nurkaya H, Kusuma IW, et al. The toxicity and antibacterial properties of Calamus ornatus Bl. rattan fruit. AgriTech. 2019;39(4):350. https://doi.org/10.22146/agritech.46416
  33. 33. Tavares TD, Antunes JC, Padrao J, Ribeiro AI, Zille A, Amorim MTP, et al. Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics. 2020;9(6):1–16. https://doi.org/10.3390/antibiotics9060314
  34. 34. Ahmed NJ, Abdalla M, Alahmadi H, Haseeb A, Khan AH. Prevalence of gram-negative and gram-positive bacteria and antibiotic resistance rates at a Military hospital in Riyadh region. J Young Pharm. 2021;13(4):392–95. https://doi.org/10.5530/jyp.2021.13.95
  35. 35. Bouarab-Chibane L, Forquet V, Lanteri P, Clement Y, Leonard-Akkari L, Oulahal N, et al. Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure-activity relationship) models. Front Microbiol. 2019;10:829. https://doi.org/10.3389/fmicb.2019.00829
  36. 36. Guimaraes AC, Meireles LM, Lemos MF, Guimaraes MCC, Endringer DC, Fronza M, et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Mol. 2019;24(13):1–12. https://doi.org/10.3390/molecules24132471
  37. 37. Salusu HD, Aryani F, Zarta AR, Budiarso E. Antioxidant assay of the ethanolic extract of three species of rattan fruits using DPPH method. J Trop Pharm Chem. 2018;4(4):154–62. https://doi.org/10.25026/jtpc.v4i4.170
  38. 38. Maulina M, Rasyidah, Mayasari U. Antifungal activity test of young manau rattan stem extract (Calamus manan) against Aspergillus flavus and Candida albicans fungi. BEST J. 2023;6(2):43–49. https://doi.org/10.30821/kfl:jibt.v6i1.11762
  39. 39. Chen PS, Peng YH. Inhibition of Penicillium digitatum and citrus green mold by volatile compounds produced by Enterobacter cloacae. J Plant Pathol Microbiol. 2016;07(03):1000339. https://doi.org/10.4172/2157-7471.1000339
  40. 40. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(1):50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006
  41. 41. Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Mol. 2014;19(11):17773–98. https://doi.org/10.3390/molecules191117773
  42. 42. Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Junior F, Medeiros D, et al. Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus. Int J Mol Sci. 2020;21(12):1–14. https://doi.org/10.3390/ijms21124531
  43. 43. Cheng F, Mo Y, Chen K, Shang X, Yang Z, Hao B, et al. Integration of metabolomics and transcriptomics indicates changes in MRSA exposed to terpinen-4-ol. BMC Microbiol. 2021;21:1–2. https://doi.org/10.1186/s12866-021-02348-2
  44. 44. Batubara I, Mitsunaga T, Ohashi H. Screening antiacne potency of Indonesian medicinal plants: Antibacterial, lipase inhibition and antioxidant activities. J Wood Sci. 2009;55(3):230–35. https://doi.org/10.1007/s10086-008-1021-1
  45. 45. Wu KC, Kao CP, Ho YL, Chang YS. Quality control of the root and rhizome of Helminthostachys zeylanica (Daodi-Ugon) by HPLC using quercetin and ugonins as markers. Mol. 2017;22(7):1–10. https://doi.org/10.3390/molecules22071115
  46. 46. Wu T, Zang X, He M, Pan S, Xu X. Structure-activity relationship of flavonoids on their anti- Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem. 2013;61(34):8185–90. https://doi.org/10.1021/jf402222v

Downloads

Download data is not yet available.