Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Advancements in breeding for waterlogging tolerance in sesame: Challenges and strategies

DOI
https://doi.org/10.14719/pst.6839
Submitted
22 December 2024
Published
08-05-2025 — Updated on 29-07-2025
Versions

Abstract

Sesame, the queen of oilseed crops, exhibits drought tolerance and has evolved to thrive in dry tracts. It is susceptible to waterlogging; even two to three days of waterlogging results in a sharp decline in yield. Evolving waterlogging-tolerant sesame varieties is the most cost-effective approach to sustain sesame production under changing climatic conditions. Breeding for waterlogging tolerance in sesame is gaining momentum due to its significant impact on crop yield and quality. Recent studies have identified genotypes with varying tolerance levels, highlighting the importance of genetic diversity and selection methods. In conventional breeding, the selection of waterlogging-tolerant genotypes is an important step. No standard screening procedures are available to identify waterlogging-tolerant genotypes in sesame. High throughput screening techniques that combine fully automated robotic systems for imaging and data processing are required for in-depth research. Though appreciable improvement has been made in genomics and candidate genes / QTLs identified for waterlogging tolerance in sesame, integration of traditional breeding with molecular techniques is lacking. A multidisciplinary approach is required to develop waterlogging-tolerant sesame varieties. In this mini-review, an attempt has been made to document the physiological, morphological and biochemical response of sesame to waterlogging and the challenges of screening and breeding sesame cultivars that are tolerant to waterlogging.

References

  1. 1. Ashri A. Sesame breeding. Pl Breeding Rev. 1998;16:179–228. https://doi.org/10.1002/9780470650110.ch5
  2. 2. Bedigian D. Sesame: The genus Sesamum. Boca Raton: CRC Press; 2010 https://doi.org/10.1201/b13601
  3. 3. Habibullah M, Sarkar S, Islam MM, Ahmed KU, Rahman MZ, Awad MF, et al. Assessing the response of diverse sesame genotypes to waterlogging durations at different plant growth stages. Plants. 2021;10(11):2294. https://doi.org/10.3390/plants10112294
  4. 4. Brar GS, Ahuja K. Sesame: Its culture, genetics, breeding and biochemistry. Ann Rev Pl Sci. 1979;1:245–313.
  5. 5. Canton H. Food and agriculture organization of the United Nations—FAO. In: Europa P. The Europa directory of international organizations London: Routledge; 2021. p. 297–305 https://doi.org/10.4324/9781003179900-41
  6. 6. Rauf S, Basharat T, Gebeyehu A, Elsafy M, Rahmatov M, Ortiz R, et al. Sesame, an underutilized oil seed crop: Breeding achievements and future challenges. Plants. 2024;13(18):2662. https://doi.org/10.3390/plants13182662
  7. 7. Huashan L, Fanting M, Qinghua Y, Jinfeng H, Chunli W, Wentao D. Effect of waterlogging on the growth and anti-oxidative enzyme activity of sesame root system. Plant Physiol Comm. 2005;41(1):45–47.
  8. 8. Gong H, Zhao F, Pei W, Meng Q. Advances in sesame (Sesamum indicum L.) germplasm resources and molecular biology research. J Plant Genet Resour. 2016;17(3):517–22.
  9. 9. Wang L, Li D, Zhang Y, Gao Y, Yu J, Wei X, et al. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PloS One. 2016;11(3):e0149912. https://doi.org/10.1371/journal.pone.0149912
  10. 10. Van Nguyen L, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S, et al. Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theor App Gen. 2017;130:743–55. https://doi.org/10.1007/s00122-016-2847-3
  11. 11. Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011;190(2):289–98. https://doi.org/10.1111/j.1469-8137.2010.03575.x
  12. 12. Voesenek L, Sasidharan R. Ethylene–and oxygen signalling–drive plant survival during flooding. Plant Biol. 2013;15(3):426–35. https://doi.org/10.1111/plb.12014
  13. 13. Wei X, Gong H, Yu J, Liu P, Wang L, Zhang Y, et al. SesameFG: An integrated database for the functional genomics of sesame. Sci Rep. 2017;7(1):2342. https://doi.org/10.1038/s41598-017-02586-3
  14. 14. Wang L, Zhang Y, Qi X, Li D, Wei W, Zhang X. Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Acta Physiol Plant. 2012;34:2241–49. https://doi.org/10.1007/s11738-012-1024-9
  15. 15. Wei W, Li D, Wang L, Ding X, Zhang Y, Gao Y, et al. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci. 2013;208:102–11. https://doi.org/10.1016/j.plantsci.2013.03.014
  16. 16. Islam M, Khatoon M. Waterlogged tolerance of sesame genotypes on the basis of morpho-anatomical features and yield. Bangladesh J Nuclear Agric. 2020;33–34.
  17. 17. Gracia M, Mansour E, Casas A, Lasa J, Medina B, Cano JLM, et al. Progress in the Spanish national barley breeding program. Span J Agric Res. 2012;10(3):741–51. https://doi.org/10.5424/sjar/2012103-2613
  18. 18. Shah A, Gadol N, Priya G, Mishra P, Rao M, Singh NK, et al. Morpho-physiological and metabolites alteration in the susceptible and tolerant genotypes of sesame under waterlogging stress and post-waterlogging recovery. Pl Stress. 2024;11:100361. https://doi.org/10.1016/j.stress.2024.100361
  19. 19. Parolin P. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia. 2001;128:326–35. https://doi.org/10.1007/s004420100660
  20. 20. Qi X, Li Q, Shen J, Qian C, Xu X, Xu Q, et al. Sugar enhances waterlogging‐induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell Environ. 2020;43(6):1545–57. https://doi.org/10.1111/pce.13738
  21. 21. Xu X, Chen M, Ji J, Xu Q, Qi X, Chen X. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Pl Bio. 2017;17:1–13. https://doi.org/10.1186/s12870-017-1081-8
  22. 22. Xu F, Wang X, Zhang X. Chlorophyll fluorescence, photosynthetic and morphological characteristics of waterlogged sesame seedlings. Agric Sci Techno. 2017;18(4):596–601.
  23. 23. Chugh V, Mishra V, Sharma V, Kumar M, Ghorbel M, Kumar H, et al. Deciphering physio-biochemical basis of tolerance mechanism for sesame (Sesamum indicum L.) genotypes under waterlogging stress at early vegetative stage. Plants. 2024;13(4):501. https://doi.org/10.3390/plants13040501
  24. 24. Xu X, Ji J, Ma X, Xu Q, Qi X, Chen X. Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Fron Plant Sci. 2016;7:1515. https://doi.org/10.3389/fpls.2016.01515
  25. 25. Chen LC, Sauter M. Polar auxin transport determines adventitious root emergence and growth in rice. Front in Plant Sci. 2019;10:444 https://doi.org/10.3389/fpls.2019.00444
  26. 26. Drew M, Saglio P, Pradet A. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta. 1985;165:51–58. https://doi.org/10.1007/BF00392211
  27. 27. Thomson C, Armstrong W, Waters I, Greenway H. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant, Cell Environ. 1990;13(4):395–403. https://doi.org/10.1111/j.1365-3040.1990.tb02144.x
  28. 28. Jackson M, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Bio. 1999;1(03):274–87. https://doi.org/10.1055/s-2007-978516
  29. 29. Evans DE. Aerenchyma formation. New Phyto. 2004;161(1):35–49. https://doi.org/10.1046/j.1469-8137.2003.00907.x
  30. 30. Grzesiak MT, Janowiak F, Szczyrek P, Kaczanowska K, Ostrowska A, Rut G, et al. Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physio Plant. 2016;38:1–15. https://doi.org/10.1007/s11738-016-2128-4
  31. 31. Dickin E, Wright D. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Europ J Agron. 2008;28(3):234–44. https://doi.org/10.1016/j.eja.2007.07.010
  32. 32. Hua PH, Ying ZH, Jian S, Xian YT, Liang RY, Wen YX, et al. Study on difference in response of different genotypic sesame seedlings to waterlogging stress. Acta Agric Jiangxi. 2015;27(1):24–27.
  33. 33. Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, et al. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants. 2019;8(7):196. https://doi.org/10.3390/plants8070196
  34. 34. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum. 2008;133(3):481–89. https://doi.org/10.1111/j.1399-3054.2008.01090.X
  35. 35. Bailey-Serres J, Chang R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot. 2005;96(4):507–18. https://doi.org/10.1093/aob/mci206
  36. 36. Pucciariello C, Parlanti S, Banti V, Novi G, Perata P. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiol. 2012;159(1):184–96. https://doi.org/10.1104/pp.111.191122
  37. 37. Dumanovic J, Nepovimova E, Natic M, Kuca K, Jacevic V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Fron Plant Sci. 2021;11:552969. https://doi.org/10.3389/fpls.2020.552969
  38. 38. Sairam R, Kumutha D, Ezhilmathi K, Deshmukh P, Srivastava G. Physiology and biochemistry of waterlogging tolerance in plants. Biol Plantarum. 2008;52:401–12. https://doi.org/10.1007/s10535-008-0084-6
  39. 39. Jaiswal A, Srivastava J. Changes in reactive oxygen scavenging systems and protein profiles in maize roots in response to nitric oxide under waterlogging stress. Ind J Biochem Biophy .2018;55:26–33.
  40. 40. Komatsu S, Shirasaka N, Sakata K. 'Omics' techniques for identifying flooding–response mechanisms in soybean. J Proteo. 2013;93:169–78. https://doi.org/10.1016/j.jprot.2012.12.016
  41. 41. Qin ZX, Li WK, Wei XD. Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. J Zhejiang Uni. 2009;35:315–20.
  42. 42. Xie R, Zheng L, Jiao Y, Huang X. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environ Exp Bot. 2021;192:104647. https://doi.org/10.1016/j.envexpbot.2021.104647
  43. 43. Zhao T, Pan X, Ou Z, Li Q. Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Sci Hortic. 2022;296:110890. https://doi.org/10.1016/j.scienta.2022.110890
  44. 44. Wang R, He P, Shao L, Zhang B, Li G. Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation. J Appl Ecol. 2005;16(5):933–38.
  45. 45. Hossain Z, Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J Pl Physiol. 2009;166(13):1391–404. https://doi.org/10.1016/j.jplph.2009.02.012
  46. 46. Xu F-y, Wang X-l, Wu Q-x, Zhang X-r, Wang L-h. Physiological responses differences of different genotype sesames to flooding stress. Adv J Food Sci Technol. 2012;4(6):352–56.
  47. 47. Steffens B, Kovalev A, Gorb SN, Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. The Plant Cell. 2012;24(8):3296–306. https://doi.org/10.1105/tpc.112.101790
  48. 48. Ucan K, Killi F, Gencoglan C, Merdun H. Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. Field Crops Res. 2007;101(3):249–58. https://doi.org/10.1016/j.fcr.2006.11.011
  49. 49. Mensah J, Obadoni B, Eruotor P, Onome-Irieguna F. Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesamum indicum L.). African J Biotechnol. 2006;5(13):1249–53.
  50. 50. Saha R, Ahmed F, Mokarroma N, Rohman M, Golder P. Physiological and biochemical changes in waterlog tolerant sesame genotypes. SAARC J Agric. 2016;14(2):31–45. https://doi.org/10.3329/sja.v14i2.31243
  51. 51. Anee TI, Biswas PK, Hasanuzzaman M. Changes in morpho-physiological and yield attributes of Sesamum indicum under waterlogging at different growth stages. J Bangla Acad Sci. 2022;46(2):165‒73. https://doi.org/10.3329/jbas.v46i2.63415
  52. 52. Sun J, Zhang X, Zhang Y, Wang L, Huang B. Effects of waterlogging on leaf protective enzyme activities and seed yield of sesame at different growth stages. Chin J Appl Environ Biol. 2009;15(6):790–95. https://doi.org/10.3724/SP.J.1145.2009.00790
  53. 53. Saha R, Ahmed B, Aziz M, Hossain M. Screening of sesame genotypes for waterlogging tolerance. Bangladesh Agron J. 2010;13(1):83–93.
  54. 54. Jatav NC, Choudhary R, Kushwaha AS, Chaturvedi S. Unlocking the genetic variations in sesame (Sesamum indicum L.) germplasm for waterlogging tolerance. J Oilseeds Res. 2021;38(3):295–99. https://doi.org/10.56739/jor.v38i3.137170
  55. 55. Zaman MSU, Malik AI, Kaur P, Ribalta FM, Erskine W. Waterlogging tolerance at germination in field pea: Variability, genetic control and indirect selection. Fron Pl Sci. 2019;10:953. https://doi.org/10.3389/fpls.2019.00953
  56. 56. Subbaiah CC, Sachs MM. Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physio. 2001;125(2):585–94. https://doi.org/10.1104/pp.125.2.585
  57. 57. Abaza GMSM, Awaad HA, Attia ZM, Abdel-Lateif KS, Gomaa MA, Abaza SMSM, et al. Inducing potential mutants in bread wheat using different doses of certain physical and chemical mutagens. Plant Breed Biotech. 2020;8:252–64. https://doi.org/10.9787/pbb.2020.8.3.252
  58. 58. Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, et al. Current research trends and prospects for yield and quality improvement in sesame, an important oilseed crop. Fron Pl Sci. 2022;13:863521. https://doi.org/10.3389/fpls.2022.863521
  59. 59. Athul V, Bindu M. Screening of sesame genotypes for waterlogging tolerance. In: Proceedings of National Seminar on Biodiversity Conservation and Farming Systems for Wetland Ecology; 2017 Feb 22-23; Kerala, India. Kerala:NSBC; 2017 [cited 2024 Sep 10] p. 259–60
  60. 60. Ahsan AFMS, Alam Z, Ahmed F, Akter S, Khan MAH. Selection of waterlogging tolerant sesame genotypes (Sesamum indicum L.) from a dataset using the MGIDI index. Data in Brief. 2024;53:110176. https://doi.org/10.1016/j.dib.2024.110176
  61. 61. Langan P, Bernad V, Walsh J, Henchy J, Khodaeiaminjan M, Mangina E, et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J Exp Bot. 2022;73(15):5149–69. https://doi.org/10.1093/jxb/erac243
  62. 62. Xu Z, Ye L, Shen Q, Zhang G. Advances in the study of waterlogging tolerance in plants. J Integ Agric. 2024;23(9):2877. https://doi.org/10.1016/j.jia.2023.12.028
  63. 63. Negrao S, Julkowska MM. Plant phenotyping. eLS. 2020;1‒14. https://doi.org/10.1002/9780470015902.a0028894
  64. 64. Yang FF, Tao L, Wang QY, Du MZ, Yang TL, Liu DZ, et al. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters. J Integ Agric. 2021;20(10):2613–26. https://doi.org/10.1016/S2095-3119(20)63306-8
  65. 65. Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14(11):20078–111. https://doi.org/10.3390/s141120078
  66. 66. Lobos GA, Camargo AV, Del Pozo A, Araus JL, Ortiz R, Doonan JH. Plant phenotyping and phenomics for plant breeding. Frontiers Media SA; 2017 https://doi.org/10.3389/978-2-88945-532-4
  67. 67. Sreepriya S. Evaluation of sesame genotypes for tolerance to waterlogging. MSc. [Thesis]. Vellanikkara: College of Agriculture; 2016 Available from: https://krishikosh.egranth.ac.in/items/74e0b601-df52-4386-ae06-34f9a0f8070f
  68. 68. Mmadi MA, Dossa K, Wang L, Zhou R, Wang Y, Cisse N, et al. Functional characterization of the versatile MYB gene family uncovered their important roles in plant development and responses to drought and waterlogging in sesame. Genes. 2017;8(12):362. https://doi.org/10.3390/genes8120362
  69. 69. Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D, et al. Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS One. 2018;13(7):e0200850. https://doi.org/10.1371/journal.pone.0200850
  70. 70. Li D, Liu P, Yu J, Wang L, Dossa K, Zhang Y, et al. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biol. 2017;17:1–19. https://doi.org/10.1186/s12870-017-1099-y
  71. 71. Jung K-H, Seo Y-S, Walia H, Cao P, Fukao T, Canlas PE, et al. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Pl Physiol. 2010;152(3):1674–92. https://doi.org/10.1104/pp.109.152157
  72. 72. Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK. Systems biology for crop improvement. Pl Gen. 2021;14(2):e20098. https://doi.org/10.1002/tpg2.20098
  73. 73. Yan Z, Lin W, Dong-Hua L, Yuan G, Hai L, Xiu Z. Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Sci Agric Sinica. 2014;47(3):422–30. https://doi.org/10.3864/j.issn.0578-1752.2014.03.002
  74. 74. Bashir H, Zafar S, Rehman R, Khalid M, Amjad I. Breeding potential of sesame for waterlogging stress in Asia. Biol Agric Sci Res J. 2023;2023(1):10. https://doi.org/10.54112/basrj.v2023i1.10
  75. 75. Tabari H. Climate change impact on flood and extreme precipitation increases with water availability. Scientific Rep. 2020;10(1):13768. https://doi.org/10.1038/s41598-020-70816-2
  76. 76. Attia A, El-Hendawy S, Al-Suhaibani N, Tahir MU, Mubushar M, dos Santos Vianna M, et al. Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crops Res. 2021;260:107981. https://doi.org/10.1016/j.fcr.2020.107981

Downloads

Download data is not yet available.