Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Multipurpose use of Colocasia esculenta for COD and iron leachate treatment in constructed wetlands optimized by response surface methodology

DOI
https://doi.org/10.14719/pst.6850
Submitted
21 December 2024
Published
04-02-2026

Abstract

This study explores the versatile application of Colocasia esculenta (L.) Schott (taro) in the treatment of contaminated water, focusing on its dual role as a natural component of constructed wetlands and as an adsorbent for the removal of chemical oxygen demand (COD) and iron (Fe) from landfill leachate. Constructed wetlands (CW) planted with C. esculenta achieved an Fe removal efficiency of 77.97 % (from 0.59 mg/L to 0.13 mg/L), while COD removal was limited to 33.37 % (from 1531 mg/L to 1020 mg/L). To improve pollutant reduction, activated carbon derived from C. esculenta was tested using batch adsorption experiments. Response surface methodology (RSM) was employed to optimize key parameters, including pH 6 and a contact time of 53 min, resulting in 46.37 % COD removal and 84.62 % Fe removal. These findings demonstrate the promising potential of C. esculenta as both a phytoremediator and a bio adsorbent, providing an eco-friendly and sustainable solution for leachate treatment in agricultural, industrial and municipal wastewater applications. This research contributes to the development of low-cost, environmentally sound strategies for pollutant removal and resource recovery in sustainable water management.

References

  1. 1. Iravanian A, Ravari SO. Types of contamination in landfills and effects on the environment: A review study. IOP Conf Ser Earth Environ Sci. 2020;614(1):012083. https://doi.org/10.1088/1755-1315/614/1/012083
  2. 2. Galvão N, de Souza JB, de Sousa Vidal CM. Landfill leachate treatment by electrocoagulation: Effects of current density and electrolysis time. J Environ Chem Eng. 2020;8(5):104368. https://doi.org/10.1016/j.jece.2020.104368
  3. 3. Wang K, Li L, Tan F, Wu D. Treatment of landfill leachate using activated sludge technology: A review. Archaea. 2018;2018:1-10. https://doi.org/10.1155/2018/1039453
  4. 4. Brix H. Wastewater treatment in constructed wetlands: System design, removal processes and treatment performance. In: Moshiri GA, editor. Constructed Wetlands for Water Quality Improvement. Boca Ratot: CRC Press; 2022. p. 09-22 https://doi.org/10.1201/9781003069997-3
  5. 5. Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremed. 2014;17(1):16-24. https://doi.org/10.1080/15226514.2013.828014
  6. 6. Wang T, Huang Z, Ruan W, Zhao M, Shao Y, Miao H. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system. J Env Sci. 2018;64:227-34. https://doi.org/10.1016/j.jes.2017.06.024
  7. 7. Cherni Y, Elleuch L, Messaoud M, Kasmi M, Chatti A, Trabelsi I. Recent technologies for leachate treatment: a review. Euro Mediterr J Environ Integr. 2021;6(3):1-20. https://doi.org/10.1007/s41207-021-00286-z
  8. 8. Iftekhar S, Heidari G, Amanat N, Zare EN, Asif MB, Hassanpour M, et al. Porous materials for the recovery of rare earth elements, platinum group metals and other valuable metals: a review. Environ Chemi Lett. 2022;20(6):3697-746. https://doi.org/10.1007/s10311-022-01486-x
  9. 9. Benítez A, Amaro-Gahete J, Chien YC, Caballero Á, Morales J, Brandell D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew Sustain Energy Rev. 2022;154:111783. https://doi.org/10.1016/j.rser.2021.111783
  10. 10. Makgabutlane B, Nthunya LN, Maubane-Nkadimeng MS, Mhlanga SD. Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. J Environ Chem Eng. 2021;9(1):104736. https://doi.org/10.1016/j.jece.2020.104736
  11. 11. Kuncoro EP, Arliyani I, Darmoekoesoemo H. Removal of Pb (II) ions from aqueous solution using Mahogany (Swietenia macrophylla King) sawdust as low cost adsorbent. Jurnal Kimia dan Pendidikan Kimia. 2022;7(1):38. https://doi.org/10.20961/jkpk.v7i1.59757
  12. 12. Mujtaba M, Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod. 2023;402:136815. https://doi.org/10.1016/j.jclepro.2023.136815
  13. 13. Zakaria MR, Ahmad Farid MA, Andou Y, Ramli I, Hassan MA. Production of biochar and activated carbon from oil palm biomass: Current status, prospects and challenges. Ind Crops Prod. 2023;199:116767. https://doi.org/10.1016/j.indcrop.2023.116767
  14. 14. Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energ Rev. 2018;87:1-21. https://doi.org/10.1016/j.rser.2018.02.003
  15. 15. Alam MM, Hossain MA, Hossain MD, Johir MAH, Hossen J, Rahman MS, et al. The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes. 2020;8(2):203. https://doi.org/10.3390/pr8020203
  16. 16. Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro waste into value added products for sustainable development. Bioresour Technol Rep. 2021;16:100834. https://doi.org/10.1016/j.biteb.2021.100834
  17. 17. Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Saidi NM, Goh ZL, et al. A review on the recent progress of the plant-based porous carbon materials as electrodes for high-performance supercapacitors. J Mat Sci. 2023;58(15):6516-55. https://doi.org/10.1007/s10853-023-08413-7
  18. 18. Abuelnoor N, AlHajaj A, Khaleel M, Vega LF, Abu-Zahra MRM. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere. 2021;282:131111. https://doi.org/10.1016/j.chemosphere.2021.131111
  19. 19. Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, et al. Applications of biomass-based materials to remove fluoride from wastewater: A review. Chemosphere. 2022;301:134679. https://doi.org/10.1016/j.chemosphere.2022.134679
  20. 20. Daikh S, Ouis D, Benyoucef A, Mouffok B. Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. Chem Phys Lett. 2022;798:139565. https://doi.org/10.1016/j.cplett.2022.139565
  21. 21. Men CK, Mohd Ghazi R. Phytoremediation of chromium (VI) using Colocasia esculenta in laboratory scale constructed wetlands. J Tropical Res Sus Sci. 2021;6(1):45-49. https://doi.org/10.47253/jtrss.v6i1.727
  22. 22. Li Y huan, Chang F min, Huang B, Song YP, Zhao HY, Wang KJ. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel. 2020;266:117053. https://doi.org/10.1016/j.fuel.2020.117053
  23. 23. Kuncoro EP, Fahmi MZ, Ama F, Arliyani I, Syaifuddin M. Adsorption of PB(II) from aqueous solution using mixture of tofu solid waste and bentonite. Pollut Res. 2023;38:S173-76.
  24. 24. Venkatachalam M, Shum-Chéong-sing A, Caro Y, Dufossé L, Fouillaud M. Ovat analysis and response surface methodology based on nutrient sources for optimization of pigment production in the marine-derived fungus Talaromyces albobiverticillius 30548 submerged fermentation. Mar Drugs. 2021 May 1;19(5). https://doi.org/10.3390/md19050248
  25. 25. Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremed. 2015;17(1):16-24. https://doi.org/10.1080/15226514.2013.828014
  26. 26. Jia L, Liu H, Kong Q, Li M, Wu S, Wu H. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water Res. 2020;169:115285. https://doi.org/10.1016/j.watres.2019.115285
  27. 27. Tebeje A, Worku Z, Nkambule TTI, Fito J. Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent. Int J Env Sci Tech. 2022;19(3):1893-906. https://doi.org/10.1007/s13762-021-03230-4
  28. 28. Anjum H, Johari K, Gnanasundaram N, Appusamy A, Thanabalan M. Investigation of green functionalization of multiwall carbon nanotubes and its application in adsorption of benzene, toluene and p-xylene from aqueous solution. J Clean Prod. 2019;221:323-38. https://doi.org/10.1016/j.jclepro.2019.02.233
  29. 29. Mengelizadeh N, Pourzamani H. Adsorption of reactive black 5 dye from aqueous solutions by carbon nanotubes and its electrochemical regeneration process. Health Scope. 2020;9(4):e102443. https://doi.org/10.5812/jhealthscope.102443
  30. 30. Okolo BI, Adeyi O, Oke EO, Agu CM, Nnaji PC, Akatobi KN, et al. Coagulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants. Sci Afr. 2021;14:e00959. https://doi.org/10.1016/j.sciaf.2021.e00959
  31. 31. Iloamaeke IM, Nnaji NJ, Okpala EC, Eboatu AN, Onuegbu TU. Mercenaria mercenaria shell: coagulation-flocculation studies on colour removal by response surface methodology and nephlometric kinetics of an industrial effluent. J Environ Chem Eng. 2021;9(4):105715. https://doi.org/10.1016/j.jece.2021.105715
  32. 32. Adaobi IC, Onukwuli D, Onyechi PC. Optimal route for turbidity removal from aquaculture wastewater by electrocoagulation-flocculation process. Journals Unizik Edu. 2019;15(1):99-108.
  33. 33. Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Nik Him NR, Lau WJ. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J Environ Chem Eng. 2018;6(2):2803-11. https://doi.org/10.1016/j.jece.2018.04.024
  34. 34. Yap PL, Tung TT, Kabiri S, Matulick N, Tran DNH, Losic D. Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. Sep Purif Technol. 2020;238:116441. https://doi.org/10.1016/j.seppur.2019.116441
  35. 35. Arliyani I, Tangahu BV, Mangkoedihardjo S, Zulaika E, Kurniawan SB. Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon. 2023;9(1):e12921. https://doi.org/10.1016/j.heliyon.2023.e12921
  36. 36. Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv. 2024;14:32073-100. https://doi.org/10.1039/D4RA04658G
  37. 37. Ahmad I, Chelliapan S, Othman N, Nasri NS, Krishnan S. Treatment of landfill leachate using modified anaerobic baffled reactor. Desalination Water Treat. 2020;183:268-275. https://doi.org/10.5004/dwt.2020.25242
  38. 38. Chelliapan S, Arumugam N, Md Din MF, Kamyab H, Ebrahimi SS. Anaerobic treatment of municipal solid waste landfill leachate (Chapter 11). In: Singh L, Yousuf A, Mahapatra DM, editors. Bioreactors. Elsevier; 2020. pp. 175-93. https://doi.org/10.1016/B978-0-12-821264-6.00011-5

Downloads

Download data is not yet available.