Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Genetic diversity analysis in peas based on morphological, biochemical and molecular markers

DOI
https://doi.org/10.14719/pst.6916
Submitted
26 December 2024
Published
11-11-2025
Versions

Abstract

This study aimed to evaluate the genetic diversity of cultivated pea (Pisum sativum) varieties using morphological, biochemical and molecular markers. Qualitative trait analysis revealed that 90.01 % of varieties had cream-yellow cotyledons, 72.72 % exhibited rough seed surfaces and 63.63 % displayed irregular seed shapes. Notably, the Algerian variety Séfrou had a pigmented seed coat, anthocyanin coloration and colored flowers. SDS-PAGE analysis detected 175 protein bands, of which 5 were polymorphic. The variety Latcha exhibited the highest number of bands 18, while Guifilo had the lowest (13 bands). Other varieties (Sirma, Aroubia, Dorian, Utrillo, Guifredo, Onward, Sara, Kelvedon) showed intermediate banding patterns (15–17 bands). Molecular analysis using 12 SSR markers revealed substantial allelic diversity, with 43 alleles across 12 loci (3–5 alleles per locus). Major allele frequency (MAF) ranged from 0.199 to 0.757, expected heterozygosity (He) averaged 0.674 (range: 0.578–0.776) and Shannon’s index averaged 1.186 (range: 0.934–1.546). The mean polymorphic information content (PIC) was 0.608 (range: 0.486–0.740), confirming high variability. These findings highlight the genetic diversity among pea cultivars, which can inform breeding programs targeting traits like seed color, protein content and stress resistance. The SSR markers and protein profiles provide valuable tools for future conservation and selection efforts.

References

  1. 1. Sato S, Isobe S, Tabata S. Structural analyses of the genomes in legumes. Curr Opin Plant Biol. 2010;13:146. https://doi.org/10.1016/j.pbi.2009.12.001
  2. 2. Mahesh C, Tarte G, Ashok K, Nilesh C. Studies on the effect of pH and temperature on the activity of esterase enzyme isolated from Pisum sativum. Asian J Biomed Pharm Sci. 2014;3:2231.
  3. 3. Ben Mansour-Gueddes S, Saidana-Naija D, Flamini G, Cheraief I, Braham M. Assessment of the climatic condition’s impact on volatiles, polyphenols and mineral contents in Tunisian olive tree (Olea europaea L.). Pol J Environ Stud. 2022;31(1):219–25. https://doi.org/10.15244/pjoes/139789
  4. 4. Yehmed J, Tlahig S, Ayeb N, Mohamed A, Yahia H, Dbara M, Loumerem M. Agro-morphological, yield components and nutritional quality attributes of Vicia faba L. var. minor cropped in Tunisian arid regions. Pol J Environ Stud. 2022;31(1):929–37. https://doi.org/10.15244/pjoes/144200
  5. 5. Zameer M, Shafique S, Shafique S, Tahir U, Zahra N, Rashid B, et al. Physiological and biochemical response of transgenic cotton plants to drought stress. Pol J Environ Stud. 2022;31(4):3909–18. https://doi.org/10.15244/pjoes/147037
  6. 6. Ozkan U, Benlioglu B, Kahramanogullari CT. A comparison of germination responses on Italian ryegrass (diploid vs tetraploid) seeds to interactive effects of salinity and temperature. Pol J Environ Stud. 2022;31(5):4229–36. https://doi.org/10.15244/pjoes/147679
  7. 7. Pietras M, Rudawska M, Iszkuło G, Kujawa A, Leski T. Distribution and molecular characterization of an alien fungus, Clathrus archeri, in Poland. Pol J Environ Stud. 2016;25(3):1197–205. https://doi.org/10.15244/pjoes/61602
  8. 8. Iqbal SH, Ghafoor A, Ayub N. Relationship between SDS-PAGE markers and Ascochyta blight in chickpea. Pak J Bot. 2005;37:87–96.
  9. 9. Hameed A, Shah TM, Atta BM, Iqbal N, Haq MA, Ali H. Comparative seed storage protein profiling of Kabuli chickpea genotypes. Pak J Bot. 2009;41(2):703–10.
  10. 10. Hameed A, Qureshi AM, Nawaz M, Iqbal N. Comparative seed storage protein profiling of mung bean genotypes. Pak J Bot. 2012;44(6):1993–9.
  11. 11. Sharma SC, Maloo SR. Genetic diversity and phylogenetic relationship among soybean (Glycine max L.) Merrill) varieties based on protein, evolutionary and morphological markers. Indian J Plant Genet Resour. 2009;22(3):260–6.
  12. 12. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Çiftçi V, Karaköy T, et al. DNA-based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol. 2015;61:244–52. https://doi.org/10.1016/j.bse.2015.06.022
  13. 13. Teshome A, Bryngelsson T, Dagne K, Geleta M. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genet. 2015;16:102. https://doi.org/10.1186/s12863-015-0250-y
  14. 14. Zong XX. Descriptors and data standard for pea (Pisum sativum L.). Beijing: China Agricultural Press; 2005. p. 18–20.
  15. 15. Yirga H, Tsegay D. Characterization of dekoko (Pisum sativum var. abyssinicum) accessions by qualitative traits in the highlands of Southern Tigray, Ethiopia. Afr J Plant Sci. 2013;7(10):482–7. https://doi.org/10.5897/AJPS2013.1015
  16. 16. Tahir NA, Hamakareem HF, Amin BOH. Differentiate of ten pea (Pisum sativum L.) cultivars by RAPD markers and seed storage proteins. Jordan J Agric Sci. 2015;11(1):95–106. https://doi.org/10.12816/0030077
  17. 17. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. https://doi.org/10.1038/227680a0
  18. 18. Zong XX, Guan JP, Wang SM, Liu QC, Redden RR, Ford R. Genetic diversity and core collection of alien Pisum sativum L. germplasm. Acta Agron Sin. 2008;34:1518–28. https://doi.org/10.1016/S1875-2780(09)60003-1
  19. 19. Amiryousefi A, Hyvönen J, Poczai P. iMEC: online marker efficiency calculator. Appl Plant Sci. 2018;6:e01159. https://doi.org/10.1002/aps3.1159
  20. 20. Yeh FC, Yang RC, Boyle T, Ye ZH, Mao JX. POPGENE, the user-friendly shareware for population genetic analysis. Edmonton: Univ. of Alberta; 1997.
  21. 21. Roldán-Ruiz I, Van Euwijk FA, Gilliland TJ, Dubreuil P, Dillmann C, Lallemand J, et al. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet. 2001;103(8):1138–50. https://doi.org/10.1007/s001220100571
  22. 22. Cupic T, Tucak M, Popovic S, Bolaric S, Grljusic S, Kosumplik V. Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. J Food Agric Environ. 2009;7(3):343–8.
  23. 23. Zhao T, Su W, Qin Y, Wang L, Kang Y. Phenotypic diversity of pea (Pisum sativum L.) varieties and the polyphenols, flavonoids and antioxidant activity of their seeds. Cienc Rural. 2020;50:1–8. https://doi.org/10.1590/0103-8478cr20190196
  24. 24. Ouafi L, Alane F, Rahal-Bouziane H, Abdelguerfi A. Agro-morphological diversity within field pea (Pisum sativum L.) genotypes. Afr J Agric Res. 2016;11(40):4039–47. https://doi.org/10.5897/AJAR2016.11454
  25. 25. Ashraf S, Haider WM, Fouad WM, Soliman MA, Badawi MA. Variability of morphological characters, protein patterns and RAPD markers in some Pisum genotypes. Afr J Agric Res. 2013;8(17):1608–16. https://doi.org/10.5897/AJAR12.1828
  26. 26. Marx GA. Classification, genetics and breeding. In: Sutcliffe JF, Pate JS, editors. Physiology of garden pea. New York: Academic Press; 1977. p. 21–43.
  27. 27. Smýkal P, Horacek J, Dostalova R, Hýbl M. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet. 2008;49(2):155–66. https://doi.org/10.1007/BF03195614
  28. 28. Suska M, Stejskal J. The electrophoretic identification of pea (Pisum sativum L.) cultivars by seed protein analysis. Rostl Vyroba. 1992;38:203–7.
  29. 29. Baranger A, Aubert G, Arnau G, Lainé AL, Deniot G, Potier J, et al. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet. 2004;108(7):1309–21. https://doi.org/10.1007/s00122-003-1538-5
  30. 30. Przybylska J, Blixt S, Hurich J. Competitive study of seed proteins in genus Pisum. VI–Electrophoretic analysis of variation in the legumin fraction composition. Genet Polonica. 1982;24:21–39.
  31. 31. Wu X, Li N, Hao J, Hu J, Zhang X, Blair MW. Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Sci. 2017;57:1574–84. https://doi.org/10.2135/cropsci2016.09.0746
  32. 32. Nasiri J, Haghnazari A, Saba J. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. Afr J Biotechnol. 2009;8:15.
  33. 33. Demirkol G, Yilmaz N. Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities. Turk J Bot. 2019;43:331–42. https://doi.org/10.3906/bot-1811-1
  34. 34. Zhuang X, McPhee KE, Coram TE, Peever TL, Chilvers MI. Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae). Appl Plant Sci. 2013;1:1200249. https://doi.org/10.3732/apps.1200249
  35. 35. Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Barranger A. Microsatellite polymorphism in Pisum sativum. Plant Breed. 2001;120:311–7. https://doi.org/10.1046/j.1439-0523.2001.00625.x
  36. 36. Gong YM, Xu SC, Mao WH, Hu QZ, Zhang GW, Ding J, et al. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci B. 2010;11:702–7. https://doi.org/10.1631/jzus.B1000056
  37. 37. Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PW. Diversity analysis and genotyping in Pisum with STMS primers. Euphytica. 2002;124:397–405. https://doi.org/10.1023/A:1015727020770
  38. 38. Haghnazari A, Samimifard R, Najafi J, Mardi M. Genetic diversity in pea (Pisum sativum L.) accessions detected by sequence tagged microsatellite markers. J Genet Plant Breed. 2005;59:145.
  39. 39. Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, et al. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet. 2005;111:1022–31. https://doi.org/10.1007/s00122-005-0014-8
  40. 40. Tar’an B, Zhang C, Warkentin T, Tullu A, Vandenberg A. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers and morphological and physiological characters. Genome. 2005;48:257–72. https://doi.org/10.1139/g05-001
  41. 41. Choudhury P, Tanveer H, Dixit G. Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.) grown in India. Genetica. 2007;130:183–91. https://doi.org/10.1007/s10709-006-9076-6
  42. 42. Cömertpay G, Baloch FS, Kilian B, Ülger AC, Özkan H. Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Mol Biol Rep. 2012;30:261–74. https://doi.org/10.1007/s11105-011-0338-1
  43. 43. Haliloglu K, Turkoglu A, Tan M, Poczai P. SSR-based molecular identification and population structure analysis for forage pea (Pisum sativum var. arvense L.) landraces. Genes. 2022;13:1086. https://doi.org/10.3390/genes13071086
  44. 44. Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet. 2008;117:413–24. https://doi.org/10.1007/s00122-008-0785-4

Downloads

Download data is not yet available.