Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Advancing cucurbit production: The role of grafting in enhancing yield and quality

DOI
https://doi.org/10.14719/pst.6917
Submitted
26 December 2024
Published
23-07-2025 — Updated on 31-07-2025
Versions

Abstract

Grafting is an extensively adopted technique in horticulture to mitigate both biotic and abiotic stresses. It also has numerous advantages, including enhanced plant growth, productivity and resilience in cucurbitaceous vegetables. Cucurbitaceous crops are prone to various pests and diseases. Under these circumstances, grafting the technique contributes to the successful cultivation of cucurbitaceous vegetables by combating soil-borne diseases, optimizing resource utilization and enhancing water and nutrient absorption efficiency. Grafting involves the unification of two separate plant tissues to form a unique plant with desirable traits inherited from both parents. Successful grafting depends on compatibility, proper healing and integration of the vascular network between the source and sink. In cucurbits, grafting is frequently used to combine robust rootstocks with superior scions, resulting in increased yields, improved fruit quality and enhanced resistance to various stresses. Continuous exploration of grafting techniques, rootstock-scion interactions and molecular mechanisms promises to refine the effectiveness and applicability of grafting in cucurbit farming, thus advancing sustainable agricultural practices. This review delves into the mechanisms, applications and outcomes of grafting among the cucurbit family.

References

  1. 1. Food and Agriculture Organization of the United Nations. FAOSTAT [Internet]. 2020 [cited 2025 Jun 26]. Available from: http://www.fao.org/faostat/en/#data.QC
  2. 2. Huang Y, Kong Q, Chen F, Bie Z. The history, current status and future prospects of vegetable grafting in China. Acta Hortic. 2014;1086:31–9. https://doi.org/10.17660/ActaHortic.2015.1086.2.
  3. 3. Majhi PK, Bhoi TK, Sahoo KC, Mishra N, Tudu S, Das S, et al. Understanding the genetics and genomics of vegetable grafting to ensure yield stability. In: Smart plant breeding for vegetable crops in post-genomics era. 2023. p. 69–98. https://doi.org/10.1007/978-981-19-5367-5_4.
  4. 4. Verdejo-Lucas S, Talavera M. Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): Pathogenicity and management. Crop Prot. 2019;126:104943. https://doi.org/10.1016/j.cropro.2019.104943.
  5. 5. Najafinia M, Sharma P. Cross pathogenicity among isolates of Fusarium oxysporum causing wilt in cucumber and muskmelon. Indian Phytopathol. 2009;62(1):9–13.
  6. 6. Chikh-Rouhou H, González-Torres R, Alvarez JM, Oumouloud A. Screening and morphological characterization of melons for resistance to Fusarium oxysporum f. sp. melonis race 1.2. HortScience. 2010;45(7):1021–5. https://doi.org/10.21273/HORTSCI.45.7.1021.
  7. 7. Perchepied L, Pitrat M. Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology. 2004;94(12):1331–6. https://doi.org/10.1094/PHYTO.2004.94.12.1331.
  8. 8. Rouphael Y, Venema JH, Edelstein M, Savvas D, Colla G, Ntatsi G, et al. Grafting as a tool for tolerance of abiotic stress. In: Vegetable grafting: principles and practices. 2017. p. 171–215. https://doi.org/10.1079/9781780648972.0171.
  9. 9. Malik AA, Malik G, Narayan S, Hussain K, Mufti S, Kumar A, et al. Grafting technique in vegetable crops – a review. SKUAST J Res. 2021;23(2):104–15.
  10. 10. Chandana BS, Lokesh TH, Shastri YS. A comprehensive review on cucurbit grafting: a sustainable approach to boost crop performance. Adv Res. 2025;26(1):74–83. https://doi.org/10.9734/air/2025/v26i11234.
  11. 11. Lee J-M, Oda M. Grafting of herbaceous vegetable and ornamental crops. Hortic Rev. 2002;28:61–124. https://doi.org/10.1002/9780470650851.ch2.
  12. 12. Rouphael Y, Kyriacou MC, Colla G. Vegetable grafting: a toolbox for securing yield stability under multiple stress conditions. Front Plant Sci. 2018;8:2255. https://doi.org/10.3389/fpls.2017.02255.
  13. 13. Davis AR, Perkins-Veazie P, Hassell R, Levi A, King SR, Zhang X. Grafting effects on vegetable quality. HortScience. 2008;43(6):1670–2. https://doi.org/10.21273/HORTSCI.43.6.1670.
  14. 14. Yetışır H, Sari N, Yücel S. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica. 2003;31:163–9. https://doi.org/10.1007/BF02980786.
  15. 15. Chen Y, Zhu W, Liu L. Application of grafting technology in Cucurbitaceae plants. J Changjiang Veg. 2012;6:6–10.
  16. 16. Sato N, Takamatsu T. Grafting culture of watermelon. Nogyo Sekai. 1930;25:24–8.
  17. 17. Tateishi K. Grafting watermelon on squash. Jpn J Hortic. 1927;39:5–8.
  18. 18. Tateishi K. Study on watermelon grafting. Jissaiengei. 1931;11:283–4.
  19. 19. Matsumoto S. Grafting of cucurbitaceous vegetables. Jissaiengei. 1931;11:288–91.
  20. 20. Thies JA. Grafting for managing vegetable crop pests. Pest Manag Sci. 2021;77(11):4825–35. https://doi.org/10.1002/ps.6512.
  21. 21. Utsugi H, Nishimura S, Horikoshi H. Surface treatment of silica gels with acetone- or hexane-solution of alcohols or phenols with some functional groups and the chemical nature of their surface groups. Sic Zairo Mater. 1973;22(238):673–9. https://doi.org/10.2472/jsms.22.673.
  22. 22. Comba L, Gay P, Aimonino DR. Robot ensembles for grafting herbaceous crops. Biosyst Eng. 2016;146:227–39. https://doi.org/10.1016/j.biosystemseng.2016.02.012.
  23. 23. Lee J-M, Kubota C, Tsao S, Bie Z, Echevarria PH, Morra L, et al. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic. 2010;127(2):93–105. https://doi.org/10.1016/j.scienta.2010.08.003.
  24. 24. Belforte G, Eula G, Raparelli T, Sirolli S, Piccarolo P, Gay P, et al. Preliminary design of an electropneumatic automatic machine for herbaceous grafting. In: Advances in Service and Industrial Robotics: Proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017. 2018. https://doi.org/10.1007/978-3-319-61276-8_28.
  25. 25. Fallik E, Alkalai-Tuvia S, Chalupowicz D, Zutahy Y, Zaaroor M, Beniches M, et al. Effects of rootstock and soil disinfection on quality of grafted watermelon fruit (Citrullus lanatus L.): a two-year study. Isr J Plant Sci. 2016;63(1):38–44. https://doi.org/10.1080/07929978.2016.1151287.
  26. 26. King SR, Davis AR, Zhang X, Crosby K. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hortic. 2010;127(2):106–11. https://doi.org/10.1016/j.scienta.2010.08.001.
  27. 27. Kyriacou MC, Soteriou GA, Rouphael Y, Siomos AS, Gerasopoulos D. Configuration of watermelon fruit quality in response to rootstock‐mediated harvest maturity and postharvest storage. J Sci Food Agric. 2016;96(7):2400–9. https://doi.org/10.1002/jsfa.7356.
  28. 28. Villocino S Jr, Quevedo M. Effects of grafting on flowering, fruiting and fruit quality of 'Sweet 16' watermelon (Citrullus lanatus Thunb.). Acta Hortic. 2015;(1088):469–72. https://doi.org/10.17660/ActaHortic.2015.1088.84.
  29. 29. Guan W, Zhao X. Techniques for melon grafting. Acta Hortic. 2016;1140:335–6. https://doi.org/10.17660/ActaHortic.2016.1140.74.
  30. 30. Devi P, Lukas S, Miles C. Advances in watermelon grafting to increase efficiency and automation. Horticulturae. 2020;6(4):88. https://doi.org/10.3390/horticulturae6040088.
  31. 31. Memmott F, Hassell R. Watermelon (Citrullus lanatus) grafting method to reduce labor cost by eliminating rootstock side shoots. Acta Hortic. 2009;871:353–6. https://doi.org/10.17660/ActaHortic.2010.871.53.
  32. 32. Dabirian S, Inglis D, Miles CA. Grafting watermelon and using plastic mulch to control verticillium wilt caused by Verticillium dahliae in Washington. HortScience. 2017;52(3):349–56. https://doi.org/10.21273/HORTSCI11403-16.
  33. 33. Galinato SP, Miles CA, Wimer JA. Non-grafted and grafted seedless watermelon transplants: comparative economic feasibility analysis. Acta Hortic. 2016;1140:323–8. https://doi.org/10.17660/ActaHortic.2016.1140.69.
  34. 34. Kubota C, Miles C, Zhao X. Grafting manual: how to produce grafted vegetable plants. 2016.
  35. 35. Guo J, Qin A, Yu X. Effects of grafting on cucumber leaf SOD and CAT gene expression and activities under low temperature stress. Yingyong Shengtai Xuebao. 2009;20(1):213.
  36. 36. Okimura M, Matsuo S, Arai K, Okitsu S. Influence of soil temperature on the growth of fruiting vegetables grafted on different rootstocks. Bull Veg Orn Crops Res Stn. 1986;9:43–58.
  37. 37. Gaion LA, Braz LT, Carvalho RF. Grafting in vegetable crops: a great technique for agriculture. Int J Veg Sci. 2018;24(1):85–102. https://doi.org/10.1080/19315260.2017.1357062.
  38. 38. El-Sayed S. Effect of different rootstocks on plant growth, yield and quality of watermelon. Ann Agric Sci Moshtohor. 2015;53(1):165–75. https://doi.org/10.21608/assjm.2015.109805.
  39. 39. Keinath AP, Wechter WP, Rutter WB, Agudelo PA. Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. niveum remain resistant when coinfected by Meloidogyne incognita in the field. Plant Dis. 2019;103(6):1383–90. https://doi.org/10.1094/PDIS-10-18-1869-RE.
  40. 40. Goreta S, Bucevic-Popovic V, Selak GV, Pavela-Vrancic M, Perica S. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J Agric Sci. 2008;146(6):695–704. https://doi.org/10.1017/S0021859608007855.
  41. 41. Rouphael Y, Cardarelli M, Rea E, Colla G. Grafting of cucumber as a means to minimize copper toxicity. Environ Exp Bot. 2008;63(1–3):49–58. https://doi.org/10.1016/j.envexpbot.2007.10.015.
  42. 42. Álvarez-Hernández JC, Castellanos-Ramos JZ, Aguirre-Mancilla CL, Huitrón-Ramírez MV, Camacho-Ferre F. Influence of rootstocks on Fusarium wilt, nematode infestation, yield and fruit quality in watermelon production. Cienc Agrotec. 2015;39:323–30. https://doi.org/10.1590/S1413-70542015000400002.
  43. 43. Miguel A, Maroto J, San Bautista A, Baixauli C, Cebolla V, Pascual B, et al. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci Hortic. 2004;103(1):9–17. https://doi.org/10.1016/j.scienta.2004.04.007.
  44. 44. Huang Y, Li J, Hua B, Liu Z, Fan M, Bie Z. Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Sci Hortic. 2013;149:80–5. https://doi.org/10.1016/j.scienta.2012.02.009.
  45. 45. Sigüenza C, Schochow M, Turini T, Ploeg A. Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. J Nematol. 2005;37(3):276.
  46. 46. Cohen R, Pivonia S, Burger Y, Edelstein M, Gamliel A, Katan J. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 2000;84(5):496–505. https://doi.org/10.1094/PDIS.2000.84.5.496.
  47. 47. Dhall R. Breeding for biotic stresses resistance in vegetable crops: a review. J Crop Sci Technol. 2015;4:13–27.
  48. 48. Ito LA, Charlo HCdO, Castoldi R, Braz LT, Camargo M. Rootstocks selection to gummy stem blight resistance and their effect on the yield of melon 'Bonus nº 2'. Rev Bras Frutic. 2009;31:262–7. https://doi.org/10.1590/S0100-29452009000100037.
  49. 49. Zhou X, Wu Y, Chen S, Chen Y, Zhang W, Sun X, et al. Using Cucurbita rootstocks to reduce Fusarium wilt incidence and increase fruit yield and carotenoid content in oriental melons. HortScience. 2014;49(11):1365–9. https://doi.org/10.21273/HORTSCI.49.11.1365.
  50. 50. Oumouloud A, El-Otmani M, Chikh-Rouhou H, Claver AG, Torres RG, Perl-Treves R, et al. Breeding melon for resistance to Fusarium wilt: recent developments. Euphytica. 2013;192:155–69. https://doi.org/10.1007/s10681-013-0904-4.
  51. 51. Neocleous D. Grafting and silicon improve photosynthesis and nitrate absorption in melon (Cucumis melo L.) plants. J Agric Sci Technol. 2015;17(7):1815–24.
  52. 52. Orsini F, Sanoubar R, Oztekin GB, Kappel N, Tepecik M, Quacquarelli C, et al. Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct Plant Biol. 2013;40(6):628–36. https://doi.org/10.1071/FP12350.
  53. 53. Expósito A, Munera M, Giné A, López‐Gómez M, Cáceres A, Picó B, et al. Cucumis metuliferus is resistant to root‐knot nematode Mi1.2 gene (a) virulent isolates and a promising melon rootstock. Plant Pathol. 2018;67(5):1161–7. https://doi.org/10.1111/ppa.12815.
  54. 54. Kokalis-Burelle N, Butler DM, Hong JC, Bausher MG, McCollum G, Rosskopf EN. Grafting and Paladin Pic-21 for nematode and weed management in vegetable production. J Nematol. 2016;48(4):231–40. https://doi.org/10.21307/jofnem-2017-031.
  55. 55. Colla G, Suárez CMC, Cardarelli M, Rouphael Y. Improving nitrogen use efficiency in melon by grafting. HortScience. 2010;45(4):559–65. https://doi.org/10.21273/HORTSCI.45.4.559.
  56. 56. Guan W, Zhao X, Huber DJ, Sims CA. Instrumental and sensory analyses of quality attributes of grafted specialty melons. J Sci Food Agric. 2015;95(14):2989–95. https://doi.org/10.1002/jsfa.7050.
  57. 57. Sugiyama M, Sakata Y, Ohara T. The history of melon and cucumber grafting in Japan. Acta Hortic. 2006;767:217–24.
  58. 58. Guan W, Zhao X, Dickson DW, Mendes ML, Thies J. Root-knot nematode resistance, yield and fruit quality of specialty melons grafted onto Cucumis metuliferus. HortScience. 2014;49(8):1046–51. https://doi.org/10.21273/HORTSCI.49.8.1046.
  59. 59. Nisini PT, Colla G, Granati E, Temperini O, Crino P, Saccardo F. Rootstock resistance to Fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Sci Hortic. 2002;93(3–4):281–8. https://doi.org/10.1016/S0304-4238(01)00335-1.
  60. 60. Edelstein M, Ben-Hur M, Leib L, Plaut Z. Mechanism responsible for restricted boron concentration in plant shoots grafted on pumpkin rootstocks. Isr J Plant Sci. 2011;59(2–4):207–15. https://doi.org/10.1560/IJPS.59.2-4.207.
  61. 61. Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Plant responses to drought stress. 2012. p. 171–95. https://doi.org/10.1007/978-3-642-32653-0_7.
  62. 62. Romero L, Belakbir A, Ragala L, Ruiz JM. Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci Plant Nutr. 1997;43(4):855–62. https://doi.org/10.1080/00380768.1997.10414652.
  63. 63. Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil. 2005;269:273–84. https://doi.org/10.1007/s11104-004-0598-4.
  64. 64. Edelstein M, Ben-Hur M, Plaut Z. Grafted melons irrigated with fresh or effluent water tolerate excess boron. J Am Soc Hortic Sci. 2007;132(4):484–91. https://doi.org/10.21273/JASHS.132.4.484.
  65. 65. Edelstein M, Ben-Hur M. Use of grafting to mitigate chemical stresses in vegetables under arid and semiarid conditions. Adv Environ Res. 2012;20:163–79.
  66. 66. Goreta Ban S, Dumičić G, Raspudić E, Vuletin Selak G, Ban D. Growth and yield of grafted cucumbers in soil infested with root-knot nematodes. Chil J Agric Res. 2014;74(1):29–34. https://doi.org/10.4067/S0718-58392014000100005.
  67. 67. Deadman M, Al Sadi A, Al Said F, Al Maawali Q. The use of cucurbit hybrid rootstocks in the management of Pythium-induced damping-off of cucumber seedlings. Acta Hortic. 2009;871:421–6. https://doi.org/10.17660/ActaHortic.2010.871.67.
  68. 68. Velkov N, Pevicharova G. Effects of cucumber grafting on yield and fruit sensory characteristics. Zemdirbyste. 2016;103(4):405–10. https://doi.org/10.13080/z-a.2016.103.052.
  69. 69. Liu S, Li H, Lv X, Ahammed GJ, Xia X, Zhou J, et al. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Sci Rep. 2016;6(1):20212. https://doi.org/10.1038/srep20212.
  70. 70. Xu Y, Guo S-R, Li H, Sun H-Z, Lu N, Shu S, et al. Resistance of cucumber grafting rootstock pumpkin cultivars to chilling and salinity stresses. Hortic Sci Technol. 2017;35(2):220–31. https://doi.org/10.12972/kjhst.20170025.
  71. 71. Davis AR, Perkins-Veazie P, Sakata Y, Lopez-Galarza S, Maroto JV, Lee S-G, et al. Cucurbit grafting. Crit Rev Plant Sci. 2008;27(1):50–74. https://doi.org/10.1080/07352680802053940.
  72. 72. Pavlou G, Vakalounakis D, Ligoxigakis E. Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis. 2002;86(4):379–82. https://doi.org/10.1094/PDIS.2002.86.4.379.
  73. 73. Abd El-Wanis MM, Amin AW, Abdel Rahman TG. Evaluation of some cucurbitaceous rootstocks 2–effect of cucumber grafting using some rootstocks on growth, yield and its relation with root-knot nematode Meloidogyne incognita and Fusarium wilt infection. Egypt J Agric Res. 2013;91(1):235–57. https://doi.org/10.21608/ejar.2013.161574.
  74. 74. Li H, Wang F, Chen XJ, Shi K, Xia XJ, Considine MJ, et al. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. Physiol Plant. 2014;152(3):571–84. https://doi.org/10.1111/ppl.12200.
  75. 75. Li H, Liu SS, Yi CY, Wang F, Zhou J, Xia XJ, et al. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ. 2014;37(12):2768–80. https://doi.org/10.1111/pce.12360.
  76. 76. Li H, Ahammed GJ, Zhou G, Xia X, Zhou J, Shi K, et al. Unraveling main limiting sites of photosynthesis under below- and above-ground heat stress in cucumber and the alleviatory role of luffa rootstock. Front Plant Sci. 2016;7:183933. https://doi.org/10.3389/fpls.2016.00746.
  77. 77. Tamilselvi N, Pugalendhi L. Studies on effect of grafting technique on growth and yield of bitter gourd (Momordica charantia L.). J Sci Ind Res. 2017;76(10):654–61.
  78. 78. Savsatlı Y, Karatas A. Effects of grafting on some phytochemical traits and mineral content in bitter gourd (Momordica charantia L.). Acta Sci Pol Hortorum Cultus. 2021;20(6):117. https://doi.org/10.24326/asphc.2021.6.12.
  79. 79. Ashok Kumar B, Sanket K. Grafting of vegetable crops as a tool to improve yield and tolerance against diseases—a review. Int J Agric Sci. 2017;0975-3710.
  80. 80. Vitale A, Rocco M, Arena S, Giuffrida F, Cassaniti C, Scaloni A, et al. Tomato susceptibility to Fusarium crown and root rot: Effect of grafting combination and proteomic analysis of tolerance expression in the rootstock. Plant Physiol Biochem. 2014;83:207–16. https://doi.org/10.1016/j.plaphy.2014.08.006.
  81. 81. Miles C, Wimer J, Inglis D, editors. Grafting eggplant and tomato for Verticillium wilt resistance. Acta Hortic. 2014;1086:91–6. https://doi.org/10.17660/ActaHortic.2015.1086.13.
  82. 82. Park DK, Son S-H, Kim S, Lee WM, Lee HJ, Choi HS, et al. Selection of melon genotypes with resistance to Fusarium wilt and Monosporascus root rot for rootstocks. Plant Breed Biotechnol. 2013;1(3):277–82. https://doi.org/10.9787/PBB.2013.1.3.277.
  83. 83. Jang Y, Yang E, Cho M, Um Y, Ko K, Chun C. Effect of grafting on growth and incidence of Phytophthora blight and bacterial wilt of pepper (Capsicum annuum L.). Hortic Environ Biotechnol. 2012;53:9–19. https://doi.org/10.1007/s13580-012-0074-7.
  84. 84. Hasama W, Morita S, Kato T. Reduction of resistance to Corynespora target leaf spot in cucumber grafted on a bloomless rootstock. Jpn J Phytopathol. 1993;59(3):243–8. https://doi.org/10.3186/jjphytopath.59.243.
  85. 85. Shishido M. Black root rot caused by Diaporthe sclerotioides threatens cucurbit cultivation in Japan. Adv Hortic Sci. 2014;28(4):208–13.
  86. 86. Keinath AP. Susceptibility of cucurbit rootstocks to Didymella bryoniae and control of gummy stem blight on grafted watermelon seedlings with fungicides. Plant Dis. 2013;97(8):1018–24. https://doi.org/10.1094/PDIS-12-12-1133-RE.
  87. 87. Kousik CS, Mandal M, Hassell R. Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Dis. 2018;102(7):1290–8. https://doi.org/10.1094/PDIS-09-17-1384-RE.
  88. 88. Owusu S, Kwoseh C, Starr J, Davies F. Grafting for management of root-knot nematodes, Meloidogyne incognita, in tomato (Solanum lycopersicum L.). Nematropica. 2016;46(1):14–21.
  89. 89. Huitrón-Ramírez MV, Ricárdez-Salinas M, Camacho-Ferre F. Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience. 2009;44(7):1838–41. https://doi.org/10.21273/HORTSCI.44.7.1838.

Downloads

Download data is not yet available.