Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Phytosociology and species diversity analysis of district Swabi, Khyber Pakhtunkhwa, Pakistan: An approach for forest conservation

DOI
https://doi.org/10.14719/pst.6943
Submitted
28 December 2024
Published
19-06-2025 — Updated on 01-07-2025
Versions

Abstract

Plant diversity is a key component of an ecologically stable environment and plays a crucial role in regulating nutrient cycling, energy flow and overall resilience of ecosystems. This study assessed the plant diversity across 4 tehsils (Lahor, Razzar, Swabi and Topi) in district Swabi, Khyber Pakhtunkhwa, Pakistan. The objective of the study was to examine the interaction between plant communities and ecological dynamics. Also documented the plant diversity of district Swabi, identifying 173 plant species belonging to 61 families. Angiosperms were the most dominant group with 168 species, followed by pteridophytes (3 species) and gymnosperms (2 species). Diverse habitat preferences were observed, with mesic habitats hosting 57.2 % of the species. Herbaceous species were the most abundant (25.4 %), followed by shrubs (25.4 %) and trees (17.3 %). Phenological assessment showed a variety of life cycles, with perennials making up 32.3 % of the species. Albeit, identified threats such as overgrazing (23.6 %) and habitat fragmentation impacted 74 % of the species. Chorotype analysis categorized species into uni-regional (31.2 %), bi-regional (42.7 %) and pluri-regional (20.2 %) distributions, with 8.67 % exhibiting cosmopolitan characteristics. The species abundance heatmap revealed Tehsil-Topi exhibited the highest alpha diversity, while Tehsil-Lahor showed the lowest. Additionally, Bray-Curtis Dissimilarity Heatmap highlights key ecological relationships among plant species. The analysis suggests that Topi is a diverse ecological hotspot, contributing significantly to overall biodiversity in the region. Principal Component Analysis (PCA) further indicates that geographical and anthropogenic influences shape plant diversity patterns. These findings underscore the need for targeted conservation strategies to protect Swabi unique biodiversity.

References

  1. 1. Spohn M, Bagchi S, Biederman LA, Borer ET, Brathen KA, Bugalho MN, et al. The positive effect of plant diversity on soil carbon depends on climate. Nat Commun. 2023;14(1):6624. https://doi.org/10.1038/s41467-023-42340-0
  2. 2. Sanchez-Pinillos M, Dakos V, Kefi S. Ecological dynamic regimes: A key concept for assessing ecological resilience. Biol Conserv. 2024;289:110409. https://doi.org/10.1016/j.biocon.2023.110409
  3. 3. Alcala-Herrera R, Moreno B, Aguirrebengoa M, Winter S, Robles-Cruz AB, Ramos-Font ME, et al. Role of agricultural management in the provision of ecosystem services in warm climate vineyards: functional prediction of genes involved in nutrient cycling and carbon sequestration. Plants. 2023;12(3):527. https://doi.org/10.3390/plants12030527
  4. 4. Le Provost G, Schenk NV, Penone C, Thiele J, Westphal C, Allan E, et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat Ecol and Evolu. 2023;7(2):236‒49. https://doi.org/10.1038/s41559-022-01918-5
  5. 5. Xue J, Li Z, Feng Q, Li Z, Gui J, Li Y. Ecological conservation pattern based on ecosystem services in the Qilian mountains, northwest China. Environ Develop. 2023;46:100834. https://doi.org/10.1016/j.envdev.2023.100834
  6. 6. Reader MO, Eppinga MB, de Boer HJ, Damm A, Petchey OL, Santos MJ. Biodiversity mediates relationships between anthropogenic drivers and ecosystem services across global mountain, island and delta systems. Global Environ Change. 2023;78:102612. https://doi.org/10.1016/j.gloenvcha.2022.102612
  7. 7. Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, et al. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett. 2020;23(4):757‒76. https://doi.org/10.1111/ele.13456
  8. 8. Wan NF, Zheng XR, Fu LW, Kiær LP, Zhang Z, Chaplin-Kramer R, et al. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nat Plants. 2020;6(5):503‒10. https://doi.org/10.1038/s41477-020-0654-y
  9. 9. Bhattacharjee DK, Rahman MM, Hossain MM, Uddin SB, Rudra S. Floristic composition and vegetation diversity status of Khagrachari Sadar, Chattogram, Bangladesh. European J Biol and Biotechnol. 2022;3(4):25‒37. https://doi.org/10.24018/ejbio.2022.3.4.376
  10. 10. Rahman IU, Hart RE, Ijaz F, Afzal A, Iqbal Z, Calixto ES, et al. Environmental variables drive plant species composition and distribution in the moist temperate forests of Northwestern Himalaya, Pakistan. PloS One. 2022;17(2):e0260687. https://doi.org/10.1371/journal.pone.0260687
  11. 11. Shah IA, Khan H, Gul B, Uslu OS. Farmers perception of climate change and Parthenium weed distribution in district Swabi, Khyber Pakhtunkhwa, Pakistan. J Weed Sci Res. 2022;28(3):167‒78. https://doi.org/10.28941/pjwsr.v28i3.887
  12. 12. Hussain F, Sher Z, Lal Badshah KA, Aziz S, Resham S. Floristic and vegetation diversity of gadoon hills outer himalayas district Swabi, Pakistan. Pak J Bot. 2023;55(1):257‒76. https://doi.org/10.30848/PJB2023-1(33)
  13. 13. Fawad M, Gul B, Khan H, Khan Z. Study and collection of hydrophytes of the district Swabi, Pakistan. Pak J Weed Sci Res. 2013;19(4):513–22.
  14. 14. Khalid M, Bilal M, Hassani D, Zaman S, Huang D. Characterization of ethno-medicinal plant resources of Karamar valley Swabi, Pakistan. J Radiation Res Appl Sci. 2017;10(2):152‒63. https://doi.org/10.1016/j.jrras.2017.03.005
  15. 15. Hussain M, Khalid F, Noreen U, Bano A, Hussain A, Alam S, et al. An ethno-botanical study of indigenous medicinal plants and their usage in rural valleys of Swabi and Hazara region of Pakistan. Brazilian J Biol. 2021;82:e243811. https://doi.org/10.1590/1519-6984.243811
  16. 16. Ullah F, Irfan M, Saeed M. Quantitative ethnomedicinal study of the flora of district Swabi, Khyber Pakhtunkhwa, Pakistan. Ethnobot Res Appl. 2023;26:1‒26. https://doi.org/10.32859/era.26.46.1-26
  17. 17. Yang X, Qiu S, Zhu Z, Rittenhouse C, Riordan D, Cullerton M. Mapping understory plant communities in deciduous forests from Sentinel-2 time series. Remote Sensing of Environ. 2023;293:113601. https://doi.org/10.1016/j.rse.2023.113601
  18. 18. Raunkiaer C, editor. The life forms of plants and statistical plant geography. Oxford University Press, London; 1934.
  19. 19. Fuller GD, Bakke AL. Raunkiaer's" Life Forms,"" Leaf-size classes," and statistical methods. The Plant World. 1918;21(2):25‒37.
  20. 20. Fraser-Jenkins C. Ferns and allies of the far-west Indo-Himalaya (Afghanistan, Pakistan and Kashmir) and Iran-revised checklists, classification and phytogeography. Indian Fern J. 2014;30(1–2):161‒91.
  21. 21. Shannon CE. The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver: University of illinois Press Champaign, IL, USA; 1949.
  22. 22. Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27(4):326‒49. https://doi.org/10.2307/1942268
  23. 23. Yang W, Ma K, Kreft H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J Biogeogr. 2013;40(8):1415‒26. https://doi.org/10.1111/jbi.12108
  24. 24. Manan F, Khan S, Muhammad Z, Ahmad Z, Abdullah A, Ariza-Montes A, et al. Floristic composition, biological spectrum and phytogeographic distribution of the Bin Dara Dir, in the western boundary of Pakistan. Front For Glob Change. 2022;019139. https://doi.org/10.3389/ffgc.2022.1019139
  25. 25. Longo M, Knox R, Medvigy D, Levine N, Dietze M, Kim Y, et al. The biophysics, ecology and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development. 2019;12:4309‒46. https://doi.org/10.5194/gmd-12-4309-2019
  26. 26. Chigani KH, Akbarjavadi S, Amiri ZG, Jafari M, Khajeddin JS. The floristic composition and biological spectrum of vegetation in the Meymeh region of Northern Isfahan province, Iran. J Appl Ecol Environ Res. 2017;15(1):415. https://doi.org/10.15666/aeer/1501_415428
  27. 27. Ali A, Jan G, Irfan M, Jan FG, Ullah F. Quantitative Ethnomedicinal study of the Flora of Tehsil Lahor, District Swabi, Khyber Pakhtunkhwa, Pakistan. Ethnobot Res Appl. 25;1–21. http://doi.org/10.32859/era.25.64.1-21
  28. 28. Haq F, Irfan M, Fraser-Jenkins C. Multivariate statistical analysis of the pteridophytic diversity of district Battagram, Khyber Pakhtunkhwa, Pakistan. Acta Ecologica Sinica. 2022;42(4):322‒31. https://doi.org/10.1016/j.chnaes.2022.01.003
  29. 29. Khan KR, Ishtiaq M, Iqbal Z, Alam J, Shah AH, Farooq M, et al., editors. Biological spectra of vegetation of Sathan Gali, Mansehra, KPK, Pakistan. World Scientific News. 2017;87:136–149.
  30. 30. Hayat SA, Hussain F, Zhu H, Asad F. Floristic composition and ecological characteristics of plants of Tehsil Razar, Swabi district, Pakistan. Silva Balcanica. 2019;20(2):95–108. https://doi.org/10.6084/m9.figshare.9929138
  31. 31. Karami P, Bandak I, Karaji GM. Comparing the effects of continuous grazing and long term exclosure on floristic composition and plant diversity in rangeland ecosystems of Saral, Iran. Int J Environ Sci Technol. 2019;16(12):7769‒76. https://doi.org/10.1007/s13762-018-02193-3
  32. 32. Sher Z, Khan Z. Floristic composition, life form and leaf spectra of the vegetation of Chagharzai valley, district Buner. Pak J Plant Sci. 2007;13(1):55‒64.
  33. 33. Karatassiou M, Parissi ZM, Panajiotidis S, Stergiou A. Impact of grazing on diversity of semi-arid rangelands in Crete island in the context of climatic change. Plants. 2022;11(7):982. https://doi.org/10.3390/plants11070982
  34. 34. Khan M, Hussain F, Musharaf S. Floristic composition and ecological characteristics of Shahbaz Garhi, district Mardan, Pakistan. Global J Sci Front Res. 2014;14(1):7‒17.
  35. 35. Chakravarty S, Ghosh S, Suresh C, Dey A, Shukla G. Deforestation: causes, effects and control strategies. Global Perspectives on Sustain Forest Management. 2012;1:1‒26. https://doi.org/10.5772/33342
  36. 36. Pykala J. Cattle grazing increases plant species richness of most species trait groups in mesic semi-natural grasslands. Plant Ecol. 2005;175(2):217‒26. https://doi.org/10.1007/s11258-005-0015-y
  37. 37. Ullah S, Badshah L. Floristic structure and ecological attributes of Jelar valley flora, district Upper Dir, Pakistan. J Biodiv Environ Sci. 2017;10(5):89‒105.
  38. 38. Ali S, Zeb U, Lei W, Khan H, Shehzad K, Khan H, et al. Floristic inventory and ecological characterization the village Sherpao, district Charsadda, Khyber Pakhtunkhwa-Pakistan. Acta Ecologica Sinica. 2018;38(5):329‒33. https://doi.org/10.1016/j.chnaes.2017.12.004
  39. 39. Shaheen H, Ibrahim M, Ullah Z. Spatial patterns and diversity of the alpine flora of Deosai Plateau, Western Himalayas. Pak J Bot. 2019;51. https://doi.org/10.30848/PJB2019-1(39)
  40. 40. Anwar M, Akhtar N, Khalid S, Qadar S. 1. Eco-floristic study of weed flora of wheat crop under edaphic variation in tehsil Razar district Swabi, Khyber Pakhtunkhwa, Pakistan. Pure Appl Biol. 2021;11(1):1‒10. https://doi.org/10.19045/bspab.2022-110001
  41. 41. Sher Z, Hossain F, Badshah L. Biodiversity and ecological characterization of the flora of Gadoon Rangeland, district Swabi, Khyber Pukhtunkhwa, Pakistan. Iran J Bot. 2014;20(1):96–108. https://doi.org/10.22092/ijb.2014.6160
  42. 42. Amjad MS, Arshad M, Sadaf HM, Akrim F, Arshad A. Floristic composition, biological spectrum and conservation status of the vegetation in Nikyal valley, Azad Jammu and Kashmir. Asian Pacific J Trop Disease. 2016;6(1):63‒69. https://doi.org/10.1016/S2222-1808(15)60986-0
  43. 43. Buot I, Okitsu S. Leaf size zonation pattern of woody species along an altitudinal gradient on Mt. Pulog, Philippines. Plant Ecol. 1999;145:197‒208. https://doi.org/10.1023/A:1009868305586
  44. 44. Hussain S, Malik ZH, Malik NZ, Ajaib M. Life form and leaf spectra reported from India Morr district Kotli, Azad Jammu and Kashmir. Biologia (Pakistan). 2014;60(1):129‒33.
  45. 45. Malik Z, Hussain F, Malik N. Life form and leaf size spectra of plant communities harbouring Ganga Chotti and Bedori hills during 1999-2000. Int J Agric Biol. 2007;9(6):833‒38.
  46. 46. Montserrat-Marti G, Camarero JJ, Palacio S, Perez-Rontome C, Milla R, Albuixech J, et al. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees. 2009;23:787‒99. https://doi.org/10.1007/s00468-009-0320-5
  47. 47. Irfan M, Jan G, Jan FG, Murad W. Floristic diversity and chorotype analysis of the pteridophytes of Pakistan. J Animal Plant Sci. 32(1):1-10. https://doi.org/10.36899/JAPS.2022.1.0395
  48. 48. Martinez-Tilleria K, Nunez-Avila M, Valdebenito LC, Pliscoff P, Squeo F, Armesto JJ. A framework for the classification Chilean terrestrial ecosystems as a tool for achieving global conservation targets. Biodivers Conserv. 2017;26:2857–76. https://doi.org/10.1007/s10531-017-1393-x
  49. 49. Haq A, Badshah L. The structure of threatened vegetation in the montane temperate ecosystem of Pashat valley, Pak-Afghan border, Hindukush Range, Bajaur, Pakistan. Appl Ecol Environ Res. 2021;19(5):3579‒600. https://doi.org/10.15666/aeer/1905_35793600
  50. 50. Ejaz U, Khan SM, Aqeel M, Khalid N, Sarfraz W, Naeem N, et al. Use of Parthenium hysterophorus with synthetic chelator for enhanced uptake of cadmium and lead from contaminated soils-a step toward better public health. Front Public Health. 2022;10:1009479. https://doi.org/10.3389/fpubh.2022.1009479
  51. 51. Addington R, Donovan L, Mitchell R, Vose J, Pecot S, Jack S, et al. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ. 2006;29(4):535‒45. https://doi.org/10.1111/j.1365-3040.2005.01430.x
  52. 52. Morsdorf MA, Ravolainen VT, Stovern LE, Yoccoz NG, Jonsdottir IS, Brathen KA. Definition of sampling units begets conclusions in ecology: The case of habitats for plant communities. Peer J. 2015;3:e815. https://doi.org/10.7717/peerj.815
  53. 53. Zaman A, Badshah L. Floristic diversity and chorotype analysis of terich valley chitral: A contribution to the flora of hindukush range, northern Pakistan. J Animal Plant Sci. 2021;31(6):1739‒54. https://doi.org/10.36899/JAPS.2021.6.0376
  54. 54. Atashgahi Z, Memariani F, Polgerd JV, Joharchi MR. Floristic composition and phytogeographical spectrum of Pistacia vera L. woodland remnants in northeastern Iran. Nordic J Bot. 2022;2022(5):e03510. https://doi.org/10.1111/njb.03510
  55. 55. Shah IA, Badshah L, Burni T, Uza NU, Khan AR, Ahmad I. Floristic inventory and ecological evaluation of plants of Jani Khel, Bannu, Khyber Pakhtunkhwa, Pakistan. Pure Appl Biol. 2022;11(4):881‒90. https://doi.org/10.19045/bspab.2022.110090
  56. 56. Waheed M, Arshad F, Majeed M, Fatima S, Mukhtar N, Aziz R, et al. Community structure and distribution pattern of woody vegetation in response to soil properties in semi-arid lowland district Kasur Punjab, Pakistan. Land. 2022;11(12):2145. https://doi.org/10.3390/land11122145
  57. 57. Ilyas M, Qureshi R, Akhtar N, Ziaul-Haq MKA, Khan AM. Floristic diversity and vegetation structure of the remnant subtropical broad leaved forests from Kabal valley, Swat, Pakistan. Pak J Bot. 2018;50(1):217‒30.

Downloads

Download data is not yet available.