Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Heritability and trait correlations in Cissus quadrangularis accessions: A genetic and morphological study

DOI
https://doi.org/10.14719/pst.6975
Submitted
30 December 2024
Published
04-02-2026

Abstract

This study aims to assess the genetic variability and heritability of key agronomic traits in 31 Cissus quadrangularis accessions, providing insights for breeding and conservation. Utilizing Randomized Complete Block Design (RCBD), plants were cultivated at Tamil Nadu Agricultural University, Coimbatore. Comprehensive statistical analyses were undertaken to elucidate trait relationships among the genotypes, including heritability, genetic variability, principal component analysis (PCA), and path analysis. Heritability estimates revealed high genetic control over traits, notably whole plant weight (WPW), with a heritability of 98.72%. Genotypic coefficients of variation (GCV) for leaf width and mature leaves per plant indicated significant genetic diversity, reinforcing their selection potential. PCA highlighted that the first two components explained 43.36% of the variance, with PC1 (25.51% variance) being primarily influenced by leaf width (LW), internodal length (IL), and whole plant weight (WPW), and PC2 (17.85% variance) being influenced by leaf length (LL) and petiole length (PL), guiding researchers in data reduction and trait prioritization. PC1 and PC2 highlight key traits for Cissus quadrangularis improvement. Path analysis demonstrated various traits' direct and indirect effects on plant growth, identifying leaf width as a critical influencer. Correlation analysis provided insights into trait interdependencies, with strong positive correlations observed between leaf width and internodal length. The phenotypic correlations, though generally weaker than genotypic, underscored the consistent expression of traits in different environments. Variance component analysis further established that traits like WPW and mature leaves per plant are predominantly governed by genetic factors, suggesting their potential for breeding programs. This research confirms genetic variability in Cissus quadrangularis and its medicinal potential, aiding trait selection in breeding programs. By integrating traditional knowledge with genetic analysis, this study provides a foundation for breeding strategies to enhance cultivation and medicinal utilization of Cissus quadrangularis.

References

  1. 1. Bafna PS, Patil PH, Maru SK, Mutha RE. Cissus quadrangularis L: A comprehensive multidisciplinary review. J Ethnopharmacol. 2021;279:114355. https://doi.org/10.1016/j.jep.2021.114355
  2. 2. Singh G, Rawat P, Maurya R. Constituents of Cissus quadrangularis. Nat Prod Res. 2007;21(6):522–28. https://doi.org/10.1080/14786410601130471
  3. 3. Siddiqua A, Mittapally S. A review on Cissus quadrangularis. Pharma Innov. 2017;6:329–34.
  4. 4. Feigni OY, Mbiantcha M, Yousseu WN, Tsafack GE, Djuichou FN, Noungoua CM, et al. Immunomodulatory, anti-inflammatory and antioxidant activities of aqueous and ethanolic extracts of Cissus quadrangularis Linn. (Vitaceae) in chronic pain. 2022;1–37. https://doi.org/10.21203/rs.3.rs-2199999/v1
  5. 5. Shukla R, Pathak A, Kambuja S, Sachan S, Mishra A, Kumar S. Pharmacognostical, phytochemical and pharmacological overview: Cissus quadrangularis Linn. Indian J Pharm Biol Res. 2015;3(3):59. https://doi.org/10.30750/ijpbr.3.3.10
  6. 6. Kaur J, Sharma G, Mahajan A, Katare OP, Bhadada SK, Ghoshal G. Role of Cissus quadrangularis in the management of osteoporosis: an overview. Crit Rev Ther Drug Carrier Syst. 2021;38(5):27‒51.
  7. https://doi.org/10.1615/critrevtherdrugcarriersyst.2021033808
  8. 7. Anuj SK, Srivastava P, Tiwari BN, Mishra JN, Behera BR, Shrivastava AK. Plant (Cissus quadrangularis) with various ethnopharmacological action: A review. J Pharm Res. 2011;4(6):1887–90.
  9. 8. Burton GW. Quantitative inheritance in grasses. Proceedings of 6th International Grassland Congress; 1952. 1:277–83
  10. 9. Alvin CR. Methods of multivariate analysis: A John Wiley and Sons. Inc. Publication, New Jersey; 2002
  11. 10. Jolliffe IT. Principal component analysis and factor analysis. John Wiley and Sons, Hoboken; 2002. 150–66
  12. 11. Reddy BR, Reddy DS, Reddaiah K, Sunil N. Studies on genetic variability, heritability and genetic advance for yield and quality traits in tomato (Solanum lycopersicum L.). Int J Curr Microbiol Appl Sci. 2013;2(9):238–44.
  13. 12. Singha S, Singha R. Crop improvement strategies and principles of selective breeding. In: Water-soil-plant-animal nexus in the era of climate change. IGI Global; 2024. pp. 93–113
  14. 13. Struik PC, Driever SM. Intriguing correlations between leaf architecture and intrinsic water‐use efficiency enable selective breeding to mitigate climate challenges. Plant Cell Environ. 2022;45(6):1607. https://doi.org/10.1111/pce.14305
  15. 14. Yadav SP, Bhandari S, Ghimire NP, Mehata DK, Majhi SK, Bhattarai S, et al. Genetic variability, character association, path coefficient and diversity analysis of rice (Oryza sativa L.) genotypes based on agro‐morphological traits. Int J Agro. 2024;2024(1):9946332. https://doi.org/10.1155/2024/9946332
  16. 15. Sangani KI. Optimization of DNA isolation and analysis of genetic variability in medicinal plant cissus by rapd-pcr technique. Int J Applied Nat Sci. 2017;6(5):15–22.
  17. 16. Anushma P, Priya RS, Pugalendhi L, Uma D, Kennedy ZJ. Phenotypic variability and heritability of veldt grape (Cissus quadrangularis Linn.) ecotypes. J Pharmacogn Phytochem. 2021;10(1):2207–09. https://doi.org/10.22271/phyto.2021.v10.i1ae.13681
  18. 17. Thia JA. The leading k–1 PC axes for k effective populations are the only dimensions suitable for DAPC of genotype data. bioRxiv. 2022;2022–04. https://doi.org/10.1101/2022.04.13.488270
  19. 18. Cartaxo-Pinto S, Paulo GH, Jackes BR, Gonçalves-Esteves V, Mendonça CB. A palynological perspective on the tribe Viteae of the grape family (Vitaceae). Grana. 2022;61(1):27–44. https://doi.org/10.1080/00173134.2021.1960420
  20. 19. Liu G, Li Y, Si J, Lu R, Hui M. Genetic model identification and major QTL mapping for petiole thickness in non-heading Chinese cabbage. Int J Mol Sci. 2024;25(2):802. https://doi.org/10.3390/ijms25020802
  21. 20. Asati BS, Verma TS, Sarathi N, Chandraker MK. Correlation and path coefficient studies in Moringa. Int J Res Agro. 2024;7(2):489–92. https://doi.org/10.33545/2618060X.2024.v7.i2g.345
  22. 21. Blinkova O, Rawlik K, Jagodziński AM. The impact of environmental factors on traits of Hedera helix L. vegetative shoots. Plant Ecol. 2023;224(11):973–78. https://doi.org/10.1007/s11258-023-01354-w
  23. 22. Noor M, Kaleem M, Akhtar MT, Feng G, Zhang J, Nazir U, et al. Evaluation of different bermudagrass germplasm at physiological and molecular level under shade along longitudinal and latitudinal gradients. BMC Plant Biol. 2024;24(1):675. https://doi.org/10.1186/s12870-024-05384-y
  24. 23. Jiang F, Cadotte MW, Jin G. Individual‐level leaf trait variation and correlation across biological and spatial scales. Ecol Evol. 2021;11(10):5344–54. https://doi.org/10.1002/ece3.7425
  25. 24. Vinoth K, Padmapriya S, Rajamani K, Gnanam R. Genetic variability, correlation and path coefficient analysis in Veldt grape (Cissus quadrangularis Linn.) ecotypes. J Pharmacogn Phytochem. 2021;10(1):2342–46. https://doi.org/10.22271/phyto.2021.v10.i1ae.13681
  26. 25. Lu X, Wang Y, Wright I, Dai Y, Rayner PJ, Reich P, Pak BC. Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. In: AGU Fall Meeting Abstracts; 2012. Vol. 2012:pp. B34B‒06
  27. 26. Wang S, Zhou DW. Associations between leaf developmental stability, canalization and phenotypic plasticity in an architectural perspective. Res Square. 2023;1–15. https://doi.org/10.21203/rs.3.rs-3781203/v1
  28. 27. Vinoth A, Padmpriya S, Rajamani K. Assessment of genetic diversity among veldt grape (Cissus quadrangularis) ecotypes. Medicinal Plants-Int J Phytomedicines Related Industries. 2021;13(4):650–62. https://doi.org/10.5958/0975-6892.2021.00076.9
  29. 28. Singh P, Singh S, Bhargava MK. Association and path analysis of yield and its component traits for yield maximization in green gram: A recent study. Int J Plant Soil Sci. 2022;34(13):99–105. https://doi.org/10.9734/ijpss/2022/v34i1330980
  30. 29. AlBallat IA, Al-Araby AA. Correlation and path coefficient analysis for seed yield and some of its traits in‎ Common bean (Phaseolus vulgaris L.)‎. Egypt J Hortic. 2019;46(1):41–51. https://doi.org/10.21608/ejoh.2018.6481.1088
  31. 30. Jafar M, Tesso B, Mengistu G. Correlation and path coefficient analysis of quantitative in Sorghum [Sorghum bicolor (L.) Moench] genotypes at Fedis, Eastern Ethiopia. Int Agri Sci Tech. 2023;3(2):1–0. https://doi.org/10.51483/IJAGST.3.2.2023.1-10
  32. 31. Al-Azml A, Doaa R, Gad AA, Ismail HE, Zyada HG. Genetic variability and correlation studies in some genotypes of eggplant. Zagazig J Agri Res. 2024;51(1):1–7. https://doi.org/10.21608/zjar.2024.346045
  33. 32. Kalimuthu M, Nagarajan R. Effect of gauge length on tensile properties of Veldt grape fibre. 2019;1–6.
  34. 33. van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P. Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agric Res. 2005;56(9):883–94. https://doi.org/10.1071/AR05153
  35. 34. Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, et al. QTL mapping for leaf morphology traits in a large maize-teosinte population. Mol Breed. 2019;39:1–3. https://doi.org/10.1007/s11032-019-1012-5

Downloads

Download data is not yet available.