Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Zero carbon agriculture: Sustainable practices and technologies for carbon-neutral food production

DOI
https://doi.org/10.14719/pst.7014
Submitted
2 January 2025
Published
10-05-2025 — Updated on 24-05-2025
Versions

Abstract

Since the Industrial Revolution, global expansion has primarily depended on the extraction of natural resources. Anthropogenic activities, such as the widespread use of fossil fuels, deforestation and other types of land-use change, have increased levels of greenhouse gases (GHGs) in the atmosphere, contributing to global climate change. The most essential task in the world is to become carbon neutral by 2050 to counteract the deteriorating global climate change. To achieve this goal, it is required and challenging to modify present industrial processes to minimise GHG emissions and enhance CO2 removal from the atmosphere. The study suggested technologies to accelerate our race to C neutrality in a variety of areas, including renewable energy, sustainable food systems (increasing soil C sequestration and lowering C emissions), preserving the health of earth's largest C stores (restoring and protecting marine and forest ecosystems) and C-neutral chemical industrial production. The wealth of information offered in this study has the potential to enthral the global population and encourage the creation of innovative solutions to avert climate change while also supporting human activities. It also includes carbon sequestration solutions to facilitate the energy sector's net zero.

References

  1. 1. Jie H, Khan I, Alharthi M, Zafar MW, Saeed A. Sustainable energy policy, socio-economic development and ecological footprint: The economic significance of natural resources, population growth and industrial development. Utilities Policy. 2023;81:101490. https://doi.org/10.1016/j.jup.2023.101490
  2. 2. Hub SK. World population to reach 9.9 billion by 2050. SDG Knowledge Hub: IISD; 2020
  3. 3. Lu J, Chen H, Cai X. From global to national scenarios: Exploring carbon emissions to 2050. Energy Strategy Rev. 2022;41:100860. https://doi.org/10.1016/j.esr.2022.100860
  4. 4. Rabaey K, Ragauskas AJ. Editorial overview: energy biotechnology. Curr Opin Biotechnol. 2014;27:V-VI. https://doi.org/10.1016/j.copbio.2014.04.001
  5. 5. Lampert A. Over-exploitation of natural resources is followed by inevitable declines in economic growth and discount rate. Nat Commun. 2019;10(1):1419. https://doi.org/10.1038/s41467-019-09246-2
  6. 6. Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci. 2011;108(50):20260–64. https://doi.org/10.1073/pnas.1116437108
  7. 7. Mathur M, Awasthi S. Carbon neutral village/cluster: a conceptual framework for envisioning. Curr Sci. 2016;1208–15.
  8. 8. Droge S. The Paris Agreement 2015: Turning point for the international climate regime. SWP Research Paper; 2016. https://ideas.repec.org/p/zbw/swprps/rp42016.html
  9. 9. Chen JM. Carbon neutrality: Toward a sustainable future. Innov. 2021;2(3):100127. https://doi.org/10.1016/j.xinn.
  10. 2021.100127
  11. 10. Kennedy J, Blunden J, Alvar-Beltrán J, Kappelle M. State of the global climate 2020. World Meteorological Organization (WMO) Geneva, Switzerland; 2021. https://doi.org/10.1175/2021BAMSStateoftheClimate.1
  12. 11. Cheng H. Future earth and sustainable developments. Innov. 2020;1(3):100090. https://doi.org/10.1016/j.xinn.
  13. 2020.100055
  14. 12. Poupeau FM. Defending the climate cause within the state: The Ministry of ecology and the drafting of France’s national low-carbon strategy (2017–2020). Environ Polit. 2024;1–23. https://doi.org/10.1080/09644016.2024.2386795
  15. 13. Pedersen JL, Bey N, Friis GS, Rohde R. The road towards carbon neutrality in the different Nordic countries: Nordic Council of Ministers; 2020. https://doi.org/10.6027/temanord2020-527
  16. 14. Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew Sustain Energy Rev. 2014;39:748–64. https://doi.org/10.1016/j.rser.2014.07.113
  17. 15. Hanssen S, Daioglou V, Steinmann Z, Doelman J, Van Vuuren D, Huijbregts M. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat Clim Change. 2020;10(11):1023–29. https://doi.org/
  18. 10.1038/s41558-020-0885-y
  19. 16. Beerling DJ. Enhanced rock weathering: biological climate change mitigation with co-benefits for food security: The Royal Society; 2017. p. 20170149. https://doi.org/10.1098/rsbl.2017.0149
  20. 17. Forster EJ, Healey JR, Dymond C, Styles D. Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nat Commun. 2021;12(1):3831. https://doi.org/10.1038/s41467-021-24084-x
  21. 18. Amundson R, Biardeau L. Soil carbon sequestration is an elusive climate mitigation tool. Proc Natl Acad Sci. 2018;115(46):11652–56. https://doi.org/10.1073/pnas.1815901115
  22. 19. Mehra P, Baker J, Sojka RE, Bolan N, Desbiolles J, Kirkham MB, et al. A review of tillage practices and their potential to impact the soil carbon dynamics. Adv Agron. 2018;150:185–230. https://doi.org/10.1016/bs.agron.2018.03.002
  23. 20. Murphy B. Soil carbon sequestration as an elusive climate mitigation tool. No-till farming systems for sustainable agriculture: Challenges and opportunities; 2020. 337–53. https://doi.org/10.1007/978-3-030-46409-7_20
  24. 21. Emerson D. Biogenic iron dust: A novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere. Front Mar Sci. 2019;6:22. https://doi.org/10.3389/fmars.2019.00022
  25. 22. Beuttler C, Charles L, Wurzbacher J. The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front Clim. 2019;1:469555. https://doi.org/10.3389/fclim.2019.00010
  26. 23. Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016;3(1):1167990. https://doi.org/10.1080/23311916.2016.1167990
  27. 24. Blackford J, Bull JM, Cevatoglu M, Connelly D, Hauton C, James RH, et al. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS). Int J Greenhouse Gas Control. 2015;38:221–29. https://doi.org/10.1016/j.ijggc.2014.10.004
  28. 25. Raza A, Gholami R, Rezaee R, Rasouli V, Rabiei M. Significant aspects of carbon capture and storage–A review. Petroleum. 2019;5(4):335–40. https://doi.org/10.1016/j.petlm.2018.12.007
  29. 26. Rahman MN, Wahid MA. Renewable-based zero-carbon fuels for the use of power generation: A case study in Malaysia supported by updated developments worldwide. Energy Rep. 2021;7:1986–2020. https://doi.org/10.1016/
  30. j.egyr.2021.04.005
  31. 27. Sedjo R, Sohngen B. Carbon sequestration in forests and soils. Annu Rev Resour Econ. 2012;4(1):127–44. https://doi.org/10.1146/annurev-resource-083110-115941
  32. 28. Vergragt PJ, Markusson N, Karlsson H. Carbon capture and storage, bio-energy with carbon capture and storage and the escape from the fossil-fuel lock-in. Global Environ Change. 2011;21(2):282–92. https://doi.org/10.1016/
  33. j.gloenvcha.2011.01.020
  34. 29. Keenan T, Williams C. The terrestrial carbon sink. Ann Rev Environ Resour. 2018;43(1):219–43. https://doi.org/10.
  35. 1146/annurev-environ-102017-030204
  36. 30. Caron P, Ferrero y de LOG, Nabarro D, Hainzelin E, Guillou M, Andersen I, et al. Food systems for sustainable development: proposals for a profound four-part transformation. Agron Sustain Dev. 2018;38:1–12. https://doi.org/
  37. 10.1007/s13593-018-0519-1
  38. 31. Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat Food. 2020;1(7):416–25. https://doi.org/10.1038/s43016-020-0110-1
  39. 32. Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677?84. https://doi.org/10.1038/s41565-018-0131-1
  40. 33. Rubio NR, Xiang N, Kaplan DL. Plant-based and cell-based approaches to meat production. Nat Commun. 2020;11(1):1–11. https://doi.org/10.1038/s41467-020-20061-y
  41. 34. Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat Plants. 2021;7(7):864?76. https://doi.org/10.1038/s41477-021-00946-6
  42. 35. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16(1):16–22. https://doi.org/10.1038/
  43. nmat4834
  44. 36. Obama B. The irreversible momentum of clean energy. Sci. 2017;355(6321):126–29. https://doi.org/10.1126/
  45. science.aam6284
  46. 37. Dutta A, Farooq S, Karimi IA, Khan SA. Assessing the potential of CO2 utilization with an integrated framework for producing power and chemicals. J CO2 Util. 2017;19:49–57. https://doi.org/10.1016/j.jcou.2017.03.005
  47. 38. K?lk?s s, Krajacic G, Duic N, Rosen MA. Advances in integration of energy, water and environment systems towards climate neutrality for sustainable development. Elsevier; 2020. p. 113410. https://doi.org/10.1016/j.enconman.2020.
  48. 113410
  49. 39. Li Y, Yu L, Chen L, Han C, Jiang H, Liu Z, et al. Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics. Innov. 2021;2(1):100090. https://doi.org/10.1016/j.xinn.2021.100090
  50. 40. Yoo JJ, Seo G, Chua MR, Park TG, Lu Y, Rotermund F, et al. Efficient perovskite solar cells via improved carrier management. Nat. 2021;590(7847):587–93. https://doi.org/10.1038/s41586-021-03285-w
  51. 41. Sargent EH. Colloidal quantum dot solar cells. Nat Photonics. 2012;6(3):133–35. https://doi.org/10.1038/nphoton.
  52. 2012.33
  53. 42. Aydin E, Allen TG, De BM, Xu L, Ávila J, Salvador M, et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat Energy. 2020;5(11):851–59. https://doi.org/
  54. 10.1038/s41560-020-00687-4
  55. 43. Ren K, Tang X, Wang P, Willerström J, Höök M. Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050. Energy. 2021;227:120524. https://doi.org/10.1016/j.energy.2021.120524
  56. 44. Ishaq H, Dincer I. Comparative assessment of renewable energy-based hydrogen production methods. Renew Sustain Energy Rev. 2021;135:110192. https://doi.org/10.1016/j.rser.2020.110192
  57. 45. Shih CF, Zhang T, Li J, Bai C. Powering the Future with Liquid Sunshine. Joule. 2018;2(10):1925–49. https://doi.org/10.1016/j.joule.2018.08.016
  58. 46. Marchi M, Niccolucci V, Pulselli RM, Marchettini N. Environmental policies for GHG emissions reduction and energy transition in the medieval historic centre of Siena (Italy): the role of solar energy. J Clean Prod. 2018;185:829–40. https://doi.org/10.1016/j.jclepro.2018.03.06
  59. 47. Zhou Z, Lin A, Wang L, Qin W, Zhao L, Sun S, et al. Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China. Sci Total Environ. 2021;784:147214. https://doi.org/10.1016/j.scitotenv.2021.147214
  60. 48. Wang ZL. Catch wave power in floating nets. Nat. 2017;542(7640):159–60. https://doi.org/10.1038/542159a
  61. 49. Nihous GC. A preliminary assessment of ocean thermal energy conversion resources. J Energy Resour Technol. 2006;129(1):10–17. https://doi.org/10.1115/1.2424965
  62. 50. Tursi A. A review on biomass: importance, chemistry, classification and conversion. Biofuel Res J. 2019;6(2):962–79. https://doi.org/10.18331/BRJ2019.6.2.3
  63. 51. Alper K, Tekin K, Karagoz S, Ragauskas AJ. Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energy Fuels. 2020;4(9):4390?414. https://doi.org/10.1039/D0SE00784F
  64. 52. Sivabalan K, Hassan S, Ya H, Pasupuleti J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. J Phys Conf Ser. 2021;1831(1):012033. https://doi.org/10.1088/1742-6596/1831/1/012033
  65. 53. Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nat. 2021;590(7847):600–05. https://doi.org/10.1038/s41586-020-03091-w
  66. 54. Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E, et al. Biofuels for a sustainable future. Cell. 2021;184(6):1636–47. https://doi.org/10.1016/j.cell.2021.01.052
  67. 55. Zivar D, Kumar S, Foroozesh J. Underground hydrogen storage: A comprehensive review. Int J Hydrogen Energy. 2021;46(45):23436–62. https://doi.org/10.1016/j.ijhydene.2020.08.138
  68. 56. Messaoudani Zl, Rigas F, Binti HMD, Che HCR. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. Int J Hydrogen Energy. 2016;41(39):17511–25. https://doi.org/10.1016/j.ijhydene.
  69. 2016.07.171
  70. 57. Renault C, Hron M, Konings R, Holcomb DE. The Molten Salt Reactor (MSR) in generation 4: overview and perspectives. NEA: Organisation for Economic Co-Operation and Development - Nuclear Energy Agency, Committee on the safety of nuclear installations - OECD/NEA/CSNI, Le Seine Saint-Germain, 12 boulevard des Iles, F-92130 Issy-les-Moulineaux (France); 2009. p. 192–20. https://doi.org/10.1016/j.pnucene.2014.02.014
  71. 58. Serp J, Allibert M, Benes O, Delpech S, Feynberg O, Ghetta V, et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog Nucl Energy. 2014;77:308–19. https://doi.org/10.1016/J.PNUCENE.2014.02.014
  72. 59. Dai Z. Chapter 17 - Thorium molten salt reactor nuclear energy system. In: Dolan TJ, Pázsit I, Rykhlevskii A, Yoshioka R, editors. Molten salt reactors and thorium energy (Second Edition): Woodhead Publishing; 2017. p. 803–14. https://doi.org/10.1016/B978-0-08-101126-3.00017-8
  73. 60. Wu Y, Li P. The potential of coupled carbon storage and geothermal extraction in a CO2-enhanced geothermal system: a review. Geothermal Energy. 2020;8(1):19. https://doi.org/10.1186/s40517-020-00173-w
  74. 61. Ahmadi A, El HAM, Jamali DH, Kumar R, Li ZX, Salameh T, et al. Applications of geothermal organic Rankine Cycle for electricity production. J Clean Prod. 2020;274:122950. https://doi.org/10.1016/j.jclepro.2020.122950
  75. 62. Lund JW, Toth AN. Direct utilization of geothermal energy 2020 worldwide review. Geothermics. 2021;90:101915. https://doi.org/10.1016/j.geothermics.2020.101915
  76. 63. Goetzl G, Milenic D, Schifflechner C. Geothermal-DHC, European research network on geothermal energy in heating and cooling networks; 2021
  77. 64. Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Porous membranes in secondary battery technologies. Chem Soc Rev. 2017;46(8):2199–236. https://doi.org/10.1039/C6CS00823B
  78. 65. Yuan Z, Yin Y, Xie C, Zhang H, Yao Y, Li X. Advanced materials for zinc-based flow battery: Development and challenge. Adv Mater. 2019;31(50):1902025. https://doi.org/10.1002/adma.201902025
  79. 66. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater. 2012;24(38):5166–80. https://doi.org/10.1002/adma.201202146
  80. 67. Swider DJ. Compressed air energy storage in an electricity system with significant wind power generation. IEEE Trans Energy Convers. 2007;22(1):95–102. https://doi.org/10.1109/TEC.2006.889547
  81. 68. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194–206. https://doi.org/10.1002/adma.201700007
  82. 69. Yang M, Hassan MA, Xu K, Zheng C, Rasheed A, Zhang Y, et al. Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Front Plant Sci. 2020;11. https://doi.org/10.3389/fpls.
  83. 2020.00927.
  84. 70. Yang X, Adair KR, Gao X, Sun X. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ Sci. 2021;14(2):643–71. https://doi.org/10.1039/D0EE02714F
  85. 71. Feng R, Zhang X, Murugesan V, Hollas A, Chen Y, Shao Y, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Sci. 2021;372(6544):836–40. https://doi.org/10.1126/
  86. science.abd9795
  87. 72. Yuan Z, Zhang H, Li X. Ion conducting membranes for aqueous flow battery systems. Chem Commun. 2018;54(55):7570–88. https://doi.org/10.1039/C8CC03058H
  88. 73. Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, et al. Technologies and perspectives for achieving carbon neutrality. Innov. 2021;2(4):100180. https://doi.org/10.1016/j.xinn.2021.100180
  89. 74. Ajayi T, Gomes JS, Bera A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet Sci. 2019;16:1028–63. https://doi.org/10.1007/s12182-019-0340-8
  90. 75. Chen H, Cong G, Lu YC. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. J Energy Chem. 2018;27(5):1304–25. https://doi.org/10.1016/j.jechem.2018.02.009
  91. 76. Zhang C, Li X. Perspective on organic flow batteries for large-scale energy storage. Curr Opin Electrochem. 2021;30:100836. https://doi.org/10.1016/j.coelec.2021.100836
  92. 77. Zhang J, Jiang G, Xu P, Ghorbani KA, Mousavi M, Yu A, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci. 2018;11(8):2010–15. https://doi.org/10.1039/C8EE00686E
  93. 78. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nat. 2012;488(7409):70–72. https://doi.org/10.1038/nature11299
  94. 79. Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food. 2021;2(3):198–209. https://doi.org/10.1038/s43016-021-00225-9
  95. 80. Li H, Ilyina T, Loughran T, Spring A, Pongratz J. Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model. Earth Syst Dynam. 2023;14(1):101–19. https://doi.org/10.5194/esd-14-101-2023
  96. 81. Frank S, Havlík P, Stehfest E, van Meijl H, Witzke P, Pérez-Domínguez I, et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5?°C target. Nat Clim Change. 2019;9(1):66–72. https://doi.org/10.1038/
  97. s41558-018-0358-8
  98. 82. Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Sci. 2018;360(6392):987–92. https://doi.org/10.1126/science.aaq0216
  99. 83. Shang Z, Abdalla M, Xia L, Zhou F, Sun W, Smith P. Can cropland management practices lower net greenhouse emissions without compromising yield? Global Change Biol. 2021;27(19):4657–70. https://doi.org/10.1111/gcb.15796
  100. 84. Dawar K, Khan A, Sardar K, Fahad S, Saud S, Datta R, et al. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Sci Total Environ. 2021;757:143739. https://doi.org/10.1016/j.scitotenv.2020.143739
  101. 85. Maresma Á, Lloveras J, Martínez-Casasnovas JA. Use of multispectral airborne images to improve in-season nitrogen management, predict grain yield and estimate economic return of maize in irrigated high yielding environments. Remote Sens. 2018;10(4):543. https://doi.org/10.3390/rs10040543
  102. 86. Sa I, Popovi? M, Khanna R, Chen Z, Lottes P, Liebisch F, et al. WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 2018;10(9):1423. https://doi.org/10.3390/rs10091423
  103. 87. Pratiwi E, Akhdiya A, Purwani J, Husnain, Syakir M. Impact of methane-utilizing bacteria on rice yield, inorganic fertilizers efficiency and methane emissions. IOP Conf Ser Earth Environ Sci. 2021;648(1):012137. https://doi.org/
  104. 10.1088/1755-1315/648/1/012137
  105. 88. Rani V, Bhatia A, Kaushik R. Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci Total Environ. 2021;775:145826. https://doi.org/10.1016/j.scitotenv.2021.145826
  106. 89. Chen Z, Xiong J, Cheng G. Recent advances in brookite phase TiO2-based photocatalysts toward CO2 reduction. Fuel. 2024;357(B):129806. https://doi.org/10.1016/j.fuel.2023.129806
  107. 90. Das R, Verma PK, Nagaraja CM. Design of porphyrin-based frameworks for artificial photosynthesis and environmental remediation: recent progress and future prospects. Coord Chem Rev. 2024;514(B):215944. https://doi.org/10.1016/j.ccr.2024.215944
  108. 91. Kaining L, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO2 conversion. Chem Sci. 2024;15:854–78. https://doi.org/10.1039/D3SC05026B
  109. 92. Li T, Gao Y, Zhou R, Zhang T, Ostrikov K. Outlook for improving energy efficiency, conversion rates and selectivity of plasma-assisted CO2 conversion. Curr Opin Green Sustain Chem. 2024;47(c):100915. https://doi.org/10.1016/
  110. j.cogsc.2024.100915
  111. 93. Liu Z, Yan T, Shi H, Pan H, Kang P. Grafting amine-functionalized ligand layer on catalyst for electrochemical CO2 capture and utilization. Appl Catal. 2024;343(B):123456. https://doi.org/10.1016/j.apcatb.2023.123456
  112. 94.Mano P, Namuangruk S. Theory-based design principles for unprecedentedly high two-level CO2 utilization of CO2-derived metal-organic frameworks. Chem Eng J. 2024;486:150248. https://doi.org/10.1016/j.cej.2024.150248
  113. 95. Wang Y, Chen D, Chen C, Wang S. Electrocatalytic urea synthesis via C-N coupling from CO2 and nitrogenous species. Acc Chem Res. 2024;57:247–56. https://doi.org/10.1021/acs.accounts.3c00633

Downloads

Download data is not yet available.